QCD Critical Surfaces at Real and Imaginary μ

  • O. Philipsen
  • Ph. de Forcrand
Conference paper


Quantumchromodynamics is the fundamental theory of the strong interactions. At finite temperatures and baryon densities, it predicts a transition from the known hadronic phase to a plasma phase, where quarks and gluons are no longer confined. For small and large quark masses, these are first order chiral and deconfinement transitions, respectively, whereas for intermediate masses they are only analytic crossovers, separated by critical surfaces. In a long term project, we calculate the critical surface bounding the region featuring chiral phase transitions in the quark mass and chemical potential parameter space of QCD with three flavours of quarks by means of lattice simulations. Our calculations are valid for small to moderate quark chemical potentials, μT. Previous calculations were done on coarse N t =4 lattices, corresponding to a lattice spacing a∼0.3 fm. Here we present results for three degenerate flavours at zero and finite density on N t =6 lattices, corresponding to a lattice spacing of a∼0.2 fm. Furthermore, we compute the phase structure at imaginary chemical potential μ/T=/3, finding tricritical lines which bound the continuation of the chiral as well as the deconfinement transition surfaces to imaginary chemical potentials and explain their curvature.


Quark Masse Direct Monte Carlo Simulation Polyakov Loop Critical Surface Chiral Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Philipsen, Eur. Phys. J. ST 152 (2007) 29 [arXiv:0708.1293 [hep-lat]]. CrossRefGoogle Scholar
  2. 2.
    F. Karsch, E. Laermann and C. Schmidt, Phys. Lett. B 520 (2001) 41 [arXiv:hep-lat/0107020]. zbMATHCrossRefGoogle Scholar
  3. 3.
    P. de Forcrand and O. Philipsen, Nucl. Phys. B 673 (2003) 170 [arXiv:hep-lat/0307020]. CrossRefGoogle Scholar
  4. 4.
    P. de Forcrand and O. Philipsen, JHEP 0701 (2007) 077 [arXiv:hep-lat/0607017]. CrossRefGoogle Scholar
  5. 5.
    P. de Forcrand, S. Kim and O. Philipsen, PoS LAT2007 (2007) 178 [arXiv:0711.0262 [hep-lat]]. Google Scholar
  6. 6.
    P. de Forcrand and O. Philipsen, JHEP 0811 (2008) 012 [arXiv:0808.1096 [hep-lat]]. CrossRefGoogle Scholar
  7. 7.
    J. T. Moscicki, M. Wos, M. Lamanna, P. de Forcrand and O. Philipsen, Comput. Phys. Commun. 181 (2010) 1715 [arXiv:0911.5682 [Unknown]]. zbMATHCrossRefGoogle Scholar
  8. 8.
    K. Binder, Z. Phys. B 43 (1981) 119. CrossRefGoogle Scholar
  9. 9.
    A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63 (1989) 1195. CrossRefGoogle Scholar
  10. 10.
    A. Roberge and N. Weiss, Nucl. Phys. B 275 (1986) 734. CrossRefGoogle Scholar
  11. 11.
    P. de Forcrand and O. Philipsen, Nucl. Phys. B 642 (2002) 290 [arXiv:hep-lat/0205016]. zbMATHCrossRefGoogle Scholar
  12. 12.
    M. D’Elia and M.P. Lombardo, Phys. Rev. D 67 (2003) 014505 [arXiv:hep-lat/0209146]. CrossRefGoogle Scholar
  13. 13.
    M. D’Elia and F. Sanfilippo, Phys. Rev. D 80 (2009) 111501 [arXiv:0909.0254 [hep-lat]]. CrossRefGoogle Scholar
  14. 14.
    P. de Forcrand and O. Philipsen, Phys. Rev. Lett. 105 (2010) 152001 [arXiv:1004.3144 [hep-lat]]. CrossRefGoogle Scholar
  15. 15.
    O. Philipsen and P. de Forcrand, PoS LATTICE2010 (2010) 211 [arXiv:1011.0291 [hep-lat]]. Google Scholar
  16. 16.
    M.A. Clark and A.D. Kennedy, Phys. Rev. Lett. 98 (2007) 051601 [arXiv:hep-lat/0608015]. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • O. Philipsen
    • 1
  • Ph. de Forcrand
    • 2
    • 3
  1. 1.Institut für Theoretische PhysikGoethe-Universität FrankfurtFrankfurt am MainGermany
  2. 2.Institut für Theoretische PhysikETH ZürichZürichSwitzerland
  3. 3.Physics Department, TH-UnitCERNGenevaSwitzerland

Personalised recommendations