The Influence of Partial Melt on Mantle Convection

  • Ana-Catalina Plesa
  • Tilman Spohn


The thermo-chemical evolution of a one-plate planet like Mars strongly influences its atmospheric evolution via volcanic outgassing, which is linked to the production of partial melt in the mantle. In earlier thermal evolution and convection models melt production has been considered by the release and consumption of latent heat, the formation of crust and the redistribution of radioactive heat sources. We present thermo-chemical 2D convection models that examine the influence of partial melt on the mantle dynamics of a one-plate planet such as Mars. Assuming fractional melting, where melt leaves the system as soon as it is formed, cooling boundary conditions and decaying radioactive elements, we investigate the effects of partial melt on the melting temperature, mantle density and viscosity. In the present study, we examine the influence of these effects on the mantle dynamics of Mars.


Partial Melt Rayleigh Number Lower Mantle Mantle Convection Mantle Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breuer, D.; Spohn, T.: Early plate tectonics versus single plate tectonics: Evidence from the magnetic field history and crust evolution. J. Geophys. Res. – Planets, 108, 5072, (2003), doi: 10.1029/20002JE001999. CrossRefGoogle Scholar
  2. 2.
    Breuer, D.; Moore, W.B.: Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io. In: Treatise on Geophysics (Editor-in-Chief G. Schubert), 10, Planets and Moons (Ed. T. Spohn), p. 299–348, Elsevier, Amsterdam, (2007). CrossRefGoogle Scholar
  3. 3.
    Breuer, D.: Dynamics and thermal evolution. In: Landolt-Börnstein Astronomy and Astrophysics (Group VI), 4, Astronomy, Astrophysics, and Cosmology (B – Solar System), p. 254–270, Springer, Berlin, (2009), ISBN 978 3 540 88054 7. Google Scholar
  4. 4.
    Caretto, L.S.; Gosman, A.D.; Patankar, S.V.; Spalding, D.B.: Two calculation procedures for steady, three-dimensional flows with recirculation. Proc. Third Int. Conf. Numer. Methods Fluid Dyn., Paris, (1972). Google Scholar
  5. 5.
    Christensen, U.: Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophysical Journal-Royal Astronomical Society, 77, 343–384, (1984). Google Scholar
  6. 6.
    De Smet, J.H.; Van Den Berg, A.P.; Vlaar, N.J.: The evolution of continental roots in numerical thermo-chemical mantle convection models including differentiation by partial melting. Lithos, 48, 153–170, (1999). CrossRefGoogle Scholar
  7. 7.
    Fraeman, A.; Korenaga, Y.: The influence of mantle melting on the evolution of Mars. Icarus, 210, 43–57, (2010), doi: 10.1016/j.icarus.2010.06.030. CrossRefGoogle Scholar
  8. 8.
    Grasset, O.; Parmentier, E.M.: Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution. J. Geophys. Res., 103, 18171–18181, (1998). CrossRefGoogle Scholar
  9. 9.
    Harder, H.; Hansen, U.: A finite-volume solution method for thermal convection and dynamo problems in spherical shells. Geophysical Journal International, 161, 522–532, (1986). CrossRefGoogle Scholar
  10. 10.
    Hauck, S.A.; Phillips, R.J.: Thermal and crustal evolution of mars. J. Geophys. Res., 2002, 107, E7, doi: 10.1029/2001JE001801, (2007).
  11. 11.
    Hirth, G.; Kohlstedt, D.L.: Water in the oceanic upper mantle: Implication for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93–108, (1996). CrossRefGoogle Scholar
  12. 12.
    Huettig, C.; Stemmer, K.: Finite volume discretization for dynamic viscosities on Voronoi grids. Phys. Earth Planet. Interiors (2008), doi: 10.1016/j.pepi.2008.07.007. Google Scholar
  13. 13.
    Huettig, C.; Stemmer, K.: The spiral grid: A new approach to discretize the sphere and its application to mantle convection. Geochem. Geophys. Geosyst., 9, Q02018, (2008), doi: 10.1029/2007GC001581. CrossRefGoogle Scholar
  14. 14.
    Huettig, C.: Scaling Laws for Internally Heated Mantle Convection, Ph. D. Thesis, (2009). Google Scholar
  15. 15.
    Karato, S.; Paterson, M.S.; Fitz Gerald, J.D.: Rheology of synthetic olivine aggregates: Influence of grain size and water. J. Geophys. Res., 91, 8151–8176, (1986). CrossRefGoogle Scholar
  16. 16.
    Karato, S.; Wu, P.: Rheology of the upper mantle: A synthesis. Science, 260, 5109, 771–778, (1993). CrossRefGoogle Scholar
  17. 17.
    Katz, R.F.; Spiegelman, M.; Langmuir, C.H.: A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4 (9), 1073, (2003). CrossRefGoogle Scholar
  18. 18.
    Korenaga, J.: Scaling of stagnant-lid convection with Arrhenius rheology and the effects of mantle melting. Geophys. J. Int., 179, 154–170, (2009), doi: 10.1111/j.1365-246X.2009.04272.x. CrossRefGoogle Scholar
  19. 19.
    Maaløe, S.: The solidus of harzburgite to 3 GPa pressure: The compositions of primary abyssal tholeiite. Mineralogy and Petrology, 81 (12), 117 (2004). Google Scholar
  20. 20.
    Morschhauser, A.; Grott, M.; Breuer, D.: Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus, 212 (2), 541–558, doi: 10.1016/j.icarus.2010.12.028. (2011). CrossRefGoogle Scholar
  21. 21.
    Neumann, G.A.; Zuber, M.T.; Wieczorek, M.A.; McGovern, P.J.; Lemoine, F.G.; Smith, D.E.: Crustal structure of Mars from gravity and topography. J. Geophys. Res., 109, E08002, (2004). CrossRefGoogle Scholar
  22. 22.
    Ohtani, E.; Nagatab, Y.; Suzuki, A.; Katoa, T.: Melting relations of peridotite and the density crossover in planetary mantles. Chemical Geology, 120, 207–221 (1995). CrossRefGoogle Scholar
  23. 23.
    Papike, J.J.; Karner, J.M.; Shearer, C.K.; Burger, P.V.: Silicate mineralogy of martian meteorites. Geochimica et Cosmochimica Acta, 73, 7443–7485, (2009), doi: 10.1016/j.gca.2009.09.008. CrossRefGoogle Scholar
  24. 24.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, (1980). zbMATHGoogle Scholar
  25. 25.
    Plesa, A.-C.; Huettig, C.: Numerical Simulation of Planetary Interiors: Mantle Convection in a 2D Spherical Shell (Abstract). Workshop on Geodynamics 2008, Herz-Jesu-Kloster, Neustadt, Waldstr. 145 67434, Neustadt/Weinstrasse, (2008). Google Scholar
  26. 26.
    Plesa, A.-C.; Breuer, D.: Viscosity Variations Due to the Influence of Partial Melt: Implications for the Thermal Evolution of Mars and Earth (Abstract No. P1.05). International Conference on Comparative Planetology: Venus – Earth – Mars, Noordwijk, Holland, (2009). Google Scholar
  27. 27.
    Plesa, A.-C.; Breuer, D.: Effects of Viscosity Modifications and Solidus Changes in Regions of Partial Melt on Mantle Dynamics (Abstract No. EPSC2009-366). 4th European Planetary Science Congress (EPSC), Potsdam, Germany, (2009). Google Scholar
  28. 28.
    Plesa, A.-C.; Breuer, D.: The Influence of Partial Melt Generation on Mantle Density and Viscosity: Consequence for the Mantle Dynamics (Abstract). Geodynamics Workshop 2010, Muenster, Deutschland. (2010). Google Scholar
  29. 29.
    Roberts, J.H.; Zhong, S.: Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. Journal of Geophysical Research E: Planets, 111, (2006). Google Scholar
  30. 30.
    Schubert, G.; Turcotte, D.L.; Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge, (2001). CrossRefGoogle Scholar
  31. 31.
    Schumacher, S.; Breuer, D.: Influence of a variable thermal conductivity on the thermochemical evolution of mars. J. Geophys. Res., 111 (E2), E02006, (2006). CrossRefGoogle Scholar
  32. 32.
    Takahashi, E.: Speculations on the Archean mantle: Missing link between komatiite and depleted garnet peridotite. J. Geophys. Res., 95 B10, 15941–15954, (1990). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Planetary ResearchGerman Aerospace CentreBerlinGermany
  2. 2.Institute of PlanetologyWWUMuensterGermany

Personalised recommendations