Copper Substrate Catalyzes Tetraazaperopyrene Polymerization

  • W. G. Schmidt
  • E. Rauls
  • U. Gerstmann
  • S. Sanna
  • M. Landmann
  • M. Rohrmüller
  • A. Riefer
  • S. Wippermann
  • S. Blankenburg

Abstract

The polymerization of tetraazaperopyrene (TAPP) molecules on a Cu(111) substrate, as observed in recent STM experiments, has been investigated in detail by first principles calculations. Tautomerization is the first step required for the formation of molecular dimers and polymers. The substrate is found to catalyze this tautomerization.

Keywords

Potential Energy Surface Total Energy Difference Free Electron Pair Control Surface Chemical Reaction Tautomerization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J V Barth, Annu. Rev. Phys. Chem. 58, 375 (2007). CrossRefGoogle Scholar
  2. 2.
    A Nilsson and L G M Pettersson, Surf. Sci. Rep. 55, 49 (2004). CrossRefGoogle Scholar
  3. 3.
    J A A W Elemans, S Lei, and S DeFeyter, Angew. Chem. Int. Ed. 48, 7298 (2009). CrossRefGoogle Scholar
  4. 4.
    S Lukas, G Witte, and C Wöll, Phys. Rev. Lett. 88, 028301 (2001). CrossRefGoogle Scholar
  5. 5.
    Q Chen and N V Richardson, Nature Materials 2, 324 (2003). CrossRefGoogle Scholar
  6. 6.
    S L Tait, A Langner, N Lin, R Chandrasekar, O Fuhr, M Ruben, and K Kern, ChemPhysChem 9, 2495 (2008). CrossRefGoogle Scholar
  7. 7.
    N Nyberg, M Odelius, A Nilsson, and L G M Petterson, J. Chem. Phys. 119, 12577 (2003). CrossRefGoogle Scholar
  8. 8.
    R Pawlak, S Clair, V Oison, M Abel, O Ourdjini, N A A Zwaneveld, D Gigmes, D Bertin, L Nony, and L Porte, ChemPhysChem 10, 1032 (2009). CrossRefGoogle Scholar
  9. 9.
    S Weigelt, C Busse, L Petersen, E Rauls, B Hammer, K V Gothelf, F Besenbacher, and T R Linderoth, Nature Materials 5, 112 (2006). CrossRefGoogle Scholar
  10. 10.
    S F Alvarado, W Rieß, M Jandke, and P Strohriegel, Org. Electronics 2, 75 (2001). CrossRefGoogle Scholar
  11. 11.
    C H Schmitz, J Ikonomov, and M Sokolowski, J. Phys. Chem. C 113, 11984 (2009). CrossRefGoogle Scholar
  12. 12.
    Y Okawa and M Aono, Nature 409, 683 (2001). CrossRefGoogle Scholar
  13. 13.
    O Endo, H Ootsubo, N Toda, M Suhara, H Ozaki, and Y Mazaki, J. Am. Chem. Soc. 126, 9894 (2004). CrossRefGoogle Scholar
  14. 14.
    L Grill, M Dyer, L Lafferentz, M Persson, M V Peters, and S Hecht, Nature Nanotech. 2, 687 (2007). CrossRefGoogle Scholar
  15. 15.
    S Weigelt, C Busse, C Bombis, M M Knudsen, K V Gothelf, T Strunskus, C Wöll, M Dahlbom, B Hammer, E Laegsgaard, F Besenbacher, and T R Linderoth, Angew. Chem. Int. Ed. 46, 9227 (2007). CrossRefGoogle Scholar
  16. 16.
    M Matena, T Riehm, M Stöhr, T A Jung, and L H Gade, Angew. Chem. Int. Ed. 47, 2414 (2008). CrossRefGoogle Scholar
  17. 17.
    M In’t Veld, P Iavicoli, S Haq, D B Amabilino, and R Raval, Chem. Commun., 1536 (2008). Google Scholar
  18. 18.
    S Weigelt, C Busse, C Bombis, M M Knudsen, K V Gothelf, E Lægsgaard, F Besenbacher, and T R Linderoth, Angew. Chem. Int. Ed. 47, 4406 (2008). CrossRefGoogle Scholar
  19. 19.
    N A A Zwaneveld, R Pawlak, M Abel, D Catalin, D Gigmes, D Bertin, and L Porte, J. Am. Chem. Soc. 130, 6678 (2008). CrossRefGoogle Scholar
  20. 20.
    M Treier, N V Richardson, and R Fasel, J. Am. Chem. Soc. 130, 14054 (2008). CrossRefGoogle Scholar
  21. 21.
    M Treier, R Fasel, N R Champness, S Argent, and N V Richardson, Phys. Chem. Chem. Phys. 11, 1209 (2009). CrossRefGoogle Scholar
  22. 22.
    J A Lipton-Duffin, O Ivasenko, D. F Perepichka, and F Rosei, Small 5, 592 (2009). CrossRefGoogle Scholar
  23. 23.
    M Matena, M Stöhr, T Riehm, J Björk, S Martens, M S Dyer, M Persson, J Lobo-Checa, K Müller, M Enache, H Wadepohl, J Zegenhagen, T A Jung, and L H Gade, Chem. Eur. J. 16, 2079 (2010). CrossRefGoogle Scholar
  24. 24.
    S Blankenburg, E Rauls, and W G Schmidt, J. Phys. Chem. Lett. 1, 3266 (2010). CrossRefGoogle Scholar
  25. 25.
    J Björk, M Matena, M S Dyer, M Enache, J Lobo-Checa, L H Gade, T A Jung, M Stöhr, and M Persson, Phys. Chem. Chem. Phys. 12, 8815 (2010). CrossRefGoogle Scholar
  26. 26.
    G Kresse and J Furthmüller, Comp. Mat. Sci. 6, 15 (1996). CrossRefGoogle Scholar
  27. 27.
    F London, Z. Phys. Chem. Abt. B 11, 222 (1930). Google Scholar
  28. 28.
    F Ortmann, F Bechstedt, and W G Schmidt, Phys. Rev. B 73, 205101 (2006). CrossRefGoogle Scholar
  29. 29.
    P E Blöchl, Phys. Rev. B 50, 17953 (1994). CrossRefGoogle Scholar
  30. 30.
    G Kresse and D Joubert, Phys. Rev. B 59, 1758 (1999). CrossRefGoogle Scholar
  31. 31.
    E Rauls, S Blankenburg, and W G Schmidt, Phys. Rev. B 81, 125401 (2010). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • W. G. Schmidt
    • 1
  • E. Rauls
    • 1
  • U. Gerstmann
    • 1
  • S. Sanna
    • 1
  • M. Landmann
    • 1
  • M. Rohrmüller
    • 1
  • A. Riefer
    • 1
  • S. Wippermann
    • 2
  • S. Blankenburg
    • 3
  1. 1.Lehrstuhl für Theoretische PhysikUniversität PaderbornPaderbornGermany
  2. 2.Dept. of ChemistryUniversity of CaliforniaDavisUSA
  3. 3.Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA)DübendorfSwitzerland

Personalised recommendations