Advertisement

The Transport of Mineral Dust Towards Hurricane Helene (2006)

  • Juliane Schwendike
  • Sarah Jones
  • Heike Vogel
  • Bernhard Vogel
Conference paper

Abstract

Significant amounts of mineral dust were transported into the vicinity of the developing tropical storm Helene between 9 to 14 September 2006. A number of different dynamical features contributed to the emission and the transport of dust towards Helene. The aim of this study is to investigate the transport of mineral dust towards Hurricane Helene. A particular focus is placed on the role of the dust radiation feedback. We use the model system COSMO-ART (Aerosols and Reactive Trace gases) in which the dust emission and dust transport as well as the radiation feedback are implemented. With the help of COSMO-ART we analyse the radiative effect of the dust on the convective systems and their environment. Model runs with a horizontal resolution of 28 km were conducted with and without the radiation feedback of the dust. Based on these model runs, we were able to distinguish between dry, dry and dusty, as well as dusty and moist air. The transport of mineral dust is analysed by calculating trajectories. We aim to assess how the dust influences the environment of the developing tropical storm Helene.

Keywords

Tropical Cyclone Dust Emission Dust Concentration Dust Event Mineral Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. C. Alfaro and L. Gomes. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J. Geophys. Res., 106:18075–18084, 2001. CrossRefGoogle Scholar
  2. 2.
    D. Bou Karam, C. Flamant, P. Knippertz, O. Reitebuch, P. Pelon, M. Chong, and A. Dabas. Dust emissions over the Sahel associated with the West African Monsoon inter-tropical discontinuity region: A representative case study. Q. J. R. Meteorol. Soc., 134:621–634, 2008. Google Scholar
  3. 3.
    A. K. Blackadar. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38:283–290, 1957. Google Scholar
  4. 4.
    S. A. Braun. Re-evaluating the role of the Saharan air layer in the Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 130:2007–2037, 2010. CrossRefGoogle Scholar
  5. 5.
    T. N. Carlson and S. G. Benjamin. Radiative heating rates for Saharan dust. J. Atmos. Sci., 37:193–213, 1980. CrossRefGoogle Scholar
  6. 6.
    T. N. Carlson and J. M. Prospero. The large-scale movement of Saharan air outbrakes over the northern equatorial Atlantic. J. Appl. Meteor., 11:283–297, 1972. CrossRefGoogle Scholar
  7. 7.
    H. F. Diaz, T. N. Carlson, and J. M. Prospero. A study of the structure and dynamics of the Saharan air layer over the northern equatorial Atlantic during BOMEX. Tech. Memo. ERL WMPO-32, National Hurricane and Experimental Meteorology Laboratory NOAA, 1976. Google Scholar
  8. 8.
    G. Doms and U. Schättler. A description of the nonhydrostatic regional model LM. Part I: Dynamics and Numerics. COSMO documentation, Deutscher Wetterdienst, Offenbach, Germany, www.cosmo-model.org, 2002.
  9. 9.
    J. P. Dunion and C. S. Velden. The impact of the Saharan air layer on the Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 353–365, 2004. Google Scholar
  10. 10.
    S. Engelstaedter and R. Washington. Atmospheric controls on the annual cycle of North African dust. J. Geophys. Res., 112:D03103, doi: 10.1029/2006JD007195, 2007. CrossRefGoogle Scholar
  11. 11.
    C. Flamant, J.-P. Chaboureau, D. J. Parker, C. M. Taylor, J.-P. Cammas, O. Bock, F. Timouk, and J. Pelon. Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the West African monsoon inter-tropical discontinuity region. Q. J. R. Meteorol. Soc., 133:1–28, 2007. Google Scholar
  12. 12.
    C. Flamant, C. Lavaysse, M. C. Todd, J.-P. Chaboureau, and J. Pelon. Multi-platform observations of a representative springtime case of Bodélé and Sudan dust emission, transport and scavenging over West Africa. Q. J. R. Meteorol. Soc., 135:413–430, 2009. Google Scholar
  13. 13.
    C. M. Grams, S. C. Jones, J. H. Marsham, D. J. Parker, J. M. Haywood, and V. Heuveline. The Atlantic inflow to the Saharan heat low: Observations and modelling. Q. J. R. Meteorol. Soc., 136(s1):125–140, 2010. Google Scholar
  14. 14.
    J. Haywood, P. Francis, S. Osborne, M. Glew, N. Loeb, D. Tanré, E. Highwood, G. Myhre, P. Formenti, and E. Hirst. Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. J. Geophys. Res., 108:8577, doi: 10.1029/2002JD002687, 2003. CrossRefGoogle Scholar
  15. 15.
    J. Helmert, B. Heinold, I. Tegen, O. Hellmuth, and M. Wendisch. On the direct and semidirect effects of Saharan dust over Europe: A modeling study. J. Geophys. Res., 112:13208, 2007. CrossRefGoogle Scholar
  16. 16.
    C. Hoose, U. Lehmann, R. Erdin, and I. Tegen. The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3, doi: 10.1088/1748-9326/3/2/025003, 2008.
  17. 17.
    T. A. Jones, D. J. Cecil, and J. Dunion. The environmental and inner-core conditions governing the intensity of Hurricane Erin (2001). Wea. Forcasting, 22:708–2725, 2007. CrossRefGoogle Scholar
  18. 18.
    V. M. Karyampudi and T. N. Carlson. Analysis and numerical simulations of the Saharan air layer and its effects on easterly wave disturbances. J. Atmos. Sci., 45:3102–3136, 1988. CrossRefGoogle Scholar
  19. 19.
    P. Knippertz, C. Deutscher, K. Kandler, T. Müller, O. Schulz, and L. Schütz. Dust mobilization due to density currents in the Atlas region: Observations from the SAMUM 2006 field campaign. J. Geophys. Res., 111:D21109, doi: 10.1029/2007JD008774, 2007. CrossRefGoogle Scholar
  20. 20.
    E. Kessler. On the distribution and continuity of water substance in atmospheric circulation models. Meteor. Monographs, 10, Americ. Meteor. Soc., Boston, MA, 1969. Google Scholar
  21. 21.
    P. Knippertz and A. Fink. Synoptic and dynamic aspects of an extreme springtime Saharan dust outbreak. Q. J. R. Meteorol. Soc., 132:1153–1177, 2006. Google Scholar
  22. 22.
    P. Knippertz. Dust emissions in the West African heat trough – the role of the diurnal cycle and of extratropical disturbances. Meteorol. Z., 17:001–011, 2008. CrossRefGoogle Scholar
  23. 23.
    V. M. Karyampudi, S. P. Palm, J. A. Regan, H. Fang, W. B. Grant, R. M. Hoff, C. Moulin, H. F. Pierce, O. Torres, E. V. Browell, and S. H. Melfi. Validation of the Saharan dust plume conceptual model using Lidar, Meteosat, and ECMWF data. Bull. Amer. Meteor. Soc., 80:1045–1075, 1999. CrossRefGoogle Scholar
  24. 24.
    J. B. Klemp and R. B. Wilhelmson. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35:1070–1096, 1978. CrossRefGoogle Scholar
  25. 25.
    K. M. Lau and K. M. Kim. Cooling of the Atlantic by Saharan dust. Geophys. Res. Lett., 34:L23811, doi: 10.1029/2007GL031538, 2007. CrossRefGoogle Scholar
  26. 26.
    A. Gaßmann. Numerische verfahren in der nichthydrostatischen modellierung und ihr einflüss auf die güte der niederschlagsvorhersage. Berichte des Deutschen Wetterdienstes, 221:1–96, 2002. Google Scholar
  27. 27.
    J. H. Marsham, D. J. Parker, C. M. Grams, C. M. Taylor, and J. M. Haywood. Uplift of Saharan dust south of the intertropical discontinuity. J. Geophys. Res., 113, doi: 10.1029/2008JD009844, 2008.
  28. 28.
    G. L. Mellor and T. Yamada. Development of a turbulence closure model for geophysical flow problems. Rev. Geophys. Space Phys., 20:831–875, 1982. CrossRefGoogle Scholar
  29. 29.
    D. J. Parker, R. Burton, A. Diongue-Niang, R. Ellis, M. Felton, C. M. Taylor, C. D. Thorncroft, P. Bessemoulin, and A. Tompkins. The diurnal cycle of the West African monsoon circulation. Q. J. R. Meteorol. Soc., 131:2839–2860, 2005. Google Scholar
  30. 30.
    J. M. Prospero and T. N. Carlson. Vertical and areal distributions of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res., 77:5255–5265, 1972. CrossRefGoogle Scholar
  31. 31.
    J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40:1002, doi: 10.1029/2000RG000095, 2002. CrossRefGoogle Scholar
  32. 32.
    M. Raschendorfer. The new turbulence parameterization of LM. COSMO Newsletter, 1:89–97, 2001. Google Scholar
  33. 33.
    B. Ritter and J.-F. Geleyn. A comprehensive radiation scheme for numerical weather prediction models with potential application in climate models. Mon. Wea. Rev., 120:303–325, 1992. CrossRefGoogle Scholar
  34. 34.
    J.-L. Redelsperger, C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher. African Monsoon, Multidisciplinary Analysis (AMMA): An international research project and field campaign. Bull. Amer. Meteor. Soc., 1739–1746, doi: 10.1175/BAMS-87-12-1739, 2006.
  35. 35.
    J. Schwendike. Convection in an African easterly wave over West Africa an the eastern Atlantic: A model case study of Helene (2006) and its interaction with the Saharan air layer. PhD thesis, Karlsruhe Institut of Meteorology, Karlsruhe, Germany, February 2010. Google Scholar
  36. 36.
    J. Steppeler, G. Doms, U. Schättler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric. Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol. Atmos. Phys., 82:75–97, 2003. CrossRefGoogle Scholar
  37. 37.
    U. Schättler, G. Doms, and C. Schraff. A description of the nonhydrostatic regional model LM, part VII: User’s guide. Deutscher Wetterdienst, www.cosmo-model.org, 2008.
  38. 38.
    J. Schwendike and S. C. Jones. Convection in an African Easterly Wave over West Africa an the eastern Atlantic: A model case study of Helene (2006). Q. J. R. Meteorol. Soc., 136(s1):364–396, 2010. Google Scholar
  39. 39.
    T. Stanelle, B. Vogel, H. Vogel, D. Bäumer, and C. Kottmeier. Feedback between dust particles and atmospheric processes over West Africa in March 2006 and June 2007. Atmos. Chem. Phys. Discuss., 10:7553–7599, 2010. CrossRefGoogle Scholar
  40. 40.
    S. Shu and L. Wu. Analysis of the influence of Saharan air layer on tropical cyclone intensity using AIRS/Aqua data. Geophys. Res. Lett., 36:L09809, doi: 10.1029/2009GL037634, 2009. CrossRefGoogle Scholar
  41. 41.
    M. Tiedtke. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117:1779–1800, 1989. CrossRefGoogle Scholar
  42. 42.
    I. Tegen, A. A. Lacis, and I. Fung. The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380:419–422, 1996. CrossRefGoogle Scholar
  43. 43.
    M. C. Todd, S. Raghavan, G. Lizcano, and P. Knippertz. Regional model simulations of the Bodélé low-level jet of northern Chad during the Bodélé Dust Experiment (BoDEx 2005). J. Climate, 21:995–1012, 2008. CrossRefGoogle Scholar
  44. 44.
    B. Vogel, C. Hoose, H. Vogel, and C. Kottmeier. A model of dust transport applied to the Dead Sea area. Meteorol. Z., 15, doi: 10.1127/0941-2948/2006/0168, 2006.
  45. 45.
    B. Vogel, H. Vogel, D. Bäumer, M. Bangert, K. Lundgren, R. Rinke, and T. Stanelle. The comprehensive model system COSMO-ART – radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos. Chem. Phys., 9:8661–8680, 2009. CrossRefGoogle Scholar
  46. 46.
    S. Wong and A. E. Dessler. Suppression of deep convection over the tropical North Atlantic by the Saharan air layer. Geophys. Res. Lett., 32:9808, doi: 10.1029/2004GL022295, 2005. CrossRefGoogle Scholar
  47. 47.
    R. Washington and M. C. Todd. Atmospheric controls on mineral dust emission from the Bodélé depression, Chad: Intraseasonal to interannual variability and the role of the low level jet. Geophys. Res. Lett., 32:L17701, doi: 10.1029/2005GL023597, 2006. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juliane Schwendike
    • 1
  • Sarah Jones
    • 1
  • Heike Vogel
    • 1
  • Bernhard Vogel
    • 1
  1. 1.Institut für Meteorologie und KlimaforschungKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations