Advertisement

Numerical Simulation of Helicopter Wake Evolution, Performance and Trim

  • Felix Bensing
  • Martin Embacher
  • Martin Hollands
  • Benjamin Kutz
  • Manuel Keßler
  • Ewald Krämer

Abstract

This paper gives an overview over recent activities in the field of helicopter aeromechanics simulation at the Institute for Aerodynamics and Gas Dynamics (IAG) at the University of Stuttgart. Numerical investigations on hovering isolated rotors in ground effect, main rotor blade shape optimization and finally computations of the entire helicopter in free flight conditions are included. For the hovering rotor good agreement with experimental data has been found for hovering out of ground effect as well as in close proximity to the ground. During our investigations on blade shape optimization a grid convergence study shows asymptotic behavior of relevant parameters such as the power coefficient or control angles. Further generalization of the fluid-structure coupling procedure allows the simulation of a helicopter in free flight condition. The extended coupling and trim method yields good agreement with flight test data. All simulations were carried out on the NEC Nehalem cluster platform of the HLRS and performance was evaluated during one of the optimization computations.

Keywords

Rotor Blade Main Rotor Ground Effect Helicopter Rotor Tail Rotor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dietz, M.: Simulation der Umströmung von Hubschrauberkonfigurationen unter Berücksichtigung von Strömungs-Struktur-Kopplung und Trimmung, Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, PhD Thesis, 2009 Google Scholar
  2. 2.
    Khier, W., Dietz, M., Schwarz, Th., Wagner, S.: Trimmed CFD Simulation of a Complete Helicopter Configuration, 33rd European Rotorcraft Forum, Kazan, Russia, 2007 Google Scholar
  3. 3.
    Kroll, N., Eisfeld, B., Bleecke, H. M.: FLOWer, Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig, Germany, Vol. 71, pp. 58–68, 1999 Google Scholar
  4. 4.
    Schwarz, Th. O.: Ein blockstrukturiertes Verfahren zur Simulation der Umströmung komplexer Konfigurationen, Institut für Aerodynamik und Strömungstechnik, Universität Braunschweig, PhD Thesis, 2005 Google Scholar
  5. 5.
    Jameson, A., Schmidt, W., Turkel, W.: Numerical Solution of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes, AIAA 14th Fluid and Plasma Dynamic Conference, Pao Alto, California, USA, 1981 Google Scholar
  6. 6.
    Jameson, A.: Time Dependent Calculations using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings, AIAA 10th Computational Fluid Dynamics Conference, Honolulu, Hawaii, USA, 1991 Google Scholar
  7. 7.
    Benoit, B., Dequin, A.-M., Kampa, K., Grunhagen, W., Basset, P.-M., Gimonet, B.: HOST, a General Helicopter Simulation Tool for Germany and France, American Helicopter Society, 56th Annual Forum, Virginia Beach, Virginia, USA, 2000 Google Scholar
  8. 8.
    Altmikus, A., Wagner, S., Beaumier, P., Servera, G.: A Comparison: Weak Versus Strong Modular Coupling for Trimmed Aeroelastic Rotor Simulations, American Helicopter Society, 58th Annual Forum, Montreal, Canada, 2004 Google Scholar
  9. 9.
    Altmikus, A.: Nichtlineare Simulation der Strömungs-Struktur-Wechselwirkung am Hubschrauberrotor, Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, PhD Thesis, 2004 Google Scholar
  10. 10.
    Bensing, F., Keßler, M., Krämer, E.: CFD-CSD-Coupled Simulations of Helicopter Rotors Using an Unstructured Flow Solver, High Performance Computing in Science and Engineering, Springer, Berlin, pp. 393–406, 2010 Google Scholar
  11. 11.
    Kutz, B., Bensing, F., Keßler, M., Krämer, E.: CFD Calculation of a Helicopter Rotor Hovering in Ground Effect, STAB Symposium, Berlin, Germany, 2010 Google Scholar
  12. 12.
    Light, J. S.: Tip Vortex Geometry of a Hovering Helicopter Rotor in Ground Effect. Proceedings of the American Helicopter Society, 45th Annual Forum, Boston, MA, USA, 1989 Google Scholar
  13. 13.
    Hollands, M., Keßler, M., Altmikus, A., Krämer, E.: Trade Study: Influence of Different Blade Shape Designs on Forward Flight and Hovering Performance of an isolated Rotor, European Rotorcraft Forum, Milano, Italy, 2011 [accepted] Google Scholar
  14. 14.
    Kranzinger, P., Hollands, M., Keßler, M., Wagner, S., Krämer, E.: Generation and Verification of Meshes Used in Automatic Process Chains to Optimize Rotor Blades, 50th AIAA Aerospace Sciences Meeting, Nashville, TN, USA, 2012 [submitted] Google Scholar
  15. 15.
    Embacher, M, Keßler, M, Dietz, M, Krämer, E: Coupled CFD-Simulation of a Helicopter in Free-Flight Trim, Proceedings of the American Helicopter Society, 66th Annual Forum, Phoenix, AZ, USA, 2010 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Felix Bensing
    • 1
  • Martin Embacher
    • 1
  • Martin Hollands
    • 1
  • Benjamin Kutz
    • 1
  • Manuel Keßler
    • 1
  • Ewald Krämer
    • 1
  1. 1.Institut für Aerodynamik und GasdynamikUniversität StuttgartStuttgartGermany

Personalised recommendations