Skip to main content

Large-Eddy Simulation of Supersonic Film Cooling at Finite Pressure Gradients

  • Conference paper
High Performance Computing in Science and Engineering '11

Abstract

Large-eddy simulations are performed to analyze film cooling in supersonic combustion ramjets (Scramjets). The transonic film cooling flow is injected through a slot parallel to a Ma=2.44 main stream with a fully turbulent boundary layer. The injection Mach number is Ma i=1.2 and adiabatic wall conditions are imposed. The cooling effectiveness is investigated for adverse and favorable pressure gradients which are imposed onto the potential core region right downstream of the slot. The numerical results are in good agreement with the measured adiabatic cooling effectiveness. The turbulent mixing process of the injected cooling flow shows high turbulence levels just downstream of the lip and slowly increasing turbulence levels in the cooling flow. At a favorable pressure gradient, the adiabatic film effectiveness downstream of the potential core region is significantly increased by approximately 50% compared to the film cooling flow without a pressure gradient, whereas the adverse pressure gradient leads to a reduction of adiabatic film effectiveness by 30%.

© 2010 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Reprinted with permission of the American Institute of Aeronautics and Astronautics [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Konopka, M., Meinke, M., Schröder, W.: Large-Eddy Simulation of Supersonic Film Cooling. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Number AIAA 2010-6792, Nashville, TN (2010)

    Google Scholar 

  2. Anderson, J.D.: Hypersonic and High-Temperature Gas Dynamics. AIAA Education Series. American Institute of Aeronautics and Astronautics, Inc. (2006)

    Google Scholar 

  3. Kanda, T., Masuya, G., Ono, F., Wakamatsu, Y.: Effect of Film Cooling/Regenerative Cooling on Scramjet Engine Performance. J. Prop. Pow. 10 (1994) 618–624

    Article  Google Scholar 

  4. Goldstein, R., Eckert, E., Tsou, F., Haji-Sheikh, A.: Film Cooling with Air and Helium Injection Through a Rearward-Facing slot into a Supersonic Air Flow. AIAA J. 4 (1966) 981–985

    Article  Google Scholar 

  5. Parthasarathy, K., Zakkay, V.: An Experimental Investigation of Turbulent Slot Injection at Mach 6. AIAA J. 8 (1970) 1302–1307

    Article  Google Scholar 

  6. Cary Jr., A., Hefner, J.: Film-Cooling Effectiveness and Skin Friction in Hypersonic Turbulent Flow. AIAA J. 10 (1972) 1188–1193

    Article  Google Scholar 

  7. Richards, B., Stollery, J.: Laminar Film Cooling Experiments in Hypersonic Flow. J. Aircraft 16 (1979) 177–181

    Article  Google Scholar 

  8. Kanda, T., Ono, F., Saito, T., Takahashi, M., Wakamatsu, Y.: Experimental Studies of Supersonic Film Cooling with Shock Wave Interaction. AIAA J. 34 (1996) 265–271

    Article  Google Scholar 

  9. Holden, M., Nowak, R., Olsen, G., Rodriguez, K.: Experimental Studies of Shock Wave/Wall Jet Interaction in Hypersonic Flow. In: 28th Aerospace Sciences Meeting. AIAA Paper 90-0607, Reno, NV (1990)

    Google Scholar 

  10. O’Connor, J., Haji-Sheikh, A.: Numerical Study of Film Cooling in Supersonic Flow. AIAA J. 30 (1992) 2426–2435

    Article  Google Scholar 

  11. Sarkar, S.: Numerical Simulation of Supersonic Slot Injection Into a Turbulent Supersonic Stream. International J. of Turbo and Jet-Engines 17 (2000) 227–240

    Article  Google Scholar 

  12. Takita, K., Masuya, G.: Effects of Combustion and Shock Impingement on Supersonic Film Cooling by Hydrogen. AIAA J. 38 (2000) 1899–1906

    Article  Google Scholar 

  13. Peng, W., Jiang, P.X.: Influence of Shock Waves on Supersonic Film Cooling. J. of Spacecraft and Rockets 46 (2009) 67–73

    Article  Google Scholar 

  14. Arnold, R., Suslov, D., Haidn, O.J.: Film Cooling of Accelerated Flow in a Subscale Combustion Chamber. J. Prop. Pow. 25 (2009) 443–451

    Article  Google Scholar 

  15. Mitani, T., Ueda, S., Tani, K., Sato, S., Miyajima, H.: Validation Studies of Scramjet Nozzle Performance. J. Prop. Pow. 9 (1993) 725–730

    Article  Google Scholar 

  16. Scheuermann, T., Banica, M., Chun, J., von Wolfersdorf, J.: Eindimensionale Untersuchungen zur gestuften Brennstoffeinbringung in einer Scramjet-Brennkammer. In: Deutscher Luft- und Raumfahrtkongress 2008. Number DLRK2008-81208, Darmstadt (2008)

    Google Scholar 

  17. Bowersox, R., Schetz, J.: Compressible Turbulence Measurements in a High-Speed High-Reynolds-number Mixing Layer. AIAA J. 32 (1994) 758–764

    Article  Google Scholar 

  18. Juhany, K., Hunt, M., Sivo, J.: Influence of Injectant Mach Number and Temperature on Supersonic Film Cooling. J. of Thermophysics and Heat Transfer 8 (1994) 59–67

    Article  Google Scholar 

  19. Boris, J., Grinsteina, F., Orana, E., Kolbea, R.: New Insights into Large Eddy Simulation. Fluid Dynamics Research 10 (1992) 199–228

    Article  Google Scholar 

  20. Liou, M., Steffen, C.J.: A New Flux Splitting Scheme. J. Comput. Phys. 107 (1994) 23–39

    Article  MathSciNet  Google Scholar 

  21. Meinke, M., Schröder, W., Krause, E., Rister, T.: A Comparison of Second- and Sixth-Order Methods for Large-Eddy Simulations. Comp. Fluids 31 (2002) 695–718

    Article  MATH  Google Scholar 

  22. Alkishriwi, N., Meinke, M., Schröder, W.: A Large-Eddy Simulation Method for Low Mach Number Flows Using Preconditioning and Multigrid. Comp. Fluids 35 (2006) 1126–1136

    Article  MATH  Google Scholar 

  23. El-Askary, W., Schröder, W., Meinke, M.: LES of compressible wall-bounded flows. Technical Report 2003-3554, AIAA (2003)

    Google Scholar 

  24. Lund, T.S., Wu, X., Squires, K.D.: Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations. 140 (1998) 233–258

    Google Scholar 

  25. Juhany, K.: Supersonic Film Cooling Including the Effect of Shock Wave Interaction. PhD thesis, California Institute of Technology Pasadena, California (1994)

    Google Scholar 

  26. Seban, R.A., Back, L.H.: Velocity and Temperature Profiles in Turbulent Boundary Layers with Tangential Injection. J. of Heat Transfer 84 (1962) 45–54

    Google Scholar 

  27. Jeong, J., Hussain, F.: On the Identification of a Vortex. J. Fluid Mech. 285 (1995) 69–94

    Article  MATH  MathSciNet  Google Scholar 

  28. Pirozzoli, S., Grasso, F., Gatski, T.B.: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at m=2.25. Phys. Fluids 16 (2004) 530–545

    Article  Google Scholar 

  29. Hyde, C., Smith, B., Schetz, J., Walker, D.A.: Turbulence Measurements for Heated Gas Slot Injection in Supersonic Flow. AIAA J. 28 (1990) 1605–1614

    Article  Google Scholar 

  30. Guarini, S.E., Moser, R.D., Shariff, K., Wray, A.: Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414 (2000) 1–33

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Konopka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Konopka, M., Meinke, M., Schröder, W. (2012). Large-Eddy Simulation of Supersonic Film Cooling at Finite Pressure Gradients. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_26

Download citation

Publish with us

Policies and ethics