Advertisement

Large-Eddy Simulation of Supersonic Film Cooling at Finite Pressure Gradients

  • Martin Konopka
  • Matthias Meinke
  • Wolfgang Schröder

Abstract

Large-eddy simulations are performed to analyze film cooling in supersonic combustion ramjets (Scramjets). The transonic film cooling flow is injected through a slot parallel to a Ma=2.44 main stream with a fully turbulent boundary layer. The injection Mach number is Ma i=1.2 and adiabatic wall conditions are imposed. The cooling effectiveness is investigated for adverse and favorable pressure gradients which are imposed onto the potential core region right downstream of the slot. The numerical results are in good agreement with the measured adiabatic cooling effectiveness. The turbulent mixing process of the injected cooling flow shows high turbulence levels just downstream of the lip and slowly increasing turbulence levels in the cooling flow. At a favorable pressure gradient, the adiabatic film effectiveness downstream of the potential core region is significantly increased by approximately 50% compared to the film cooling flow without a pressure gradient, whereas the adverse pressure gradient leads to a reduction of adiabatic film effectiveness by 30%.

Keywords

Shear Layer Turbulent Kinetic Energy Reynolds Average Navier Stokes Turbulent Boundary Layer Reynolds Average Navier Stokes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Konopka, M., Meinke, M., Schröder, W.: Large-Eddy Simulation of Supersonic Film Cooling. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Number AIAA 2010-6792, Nashville, TN (2010) Google Scholar
  2. 2.
    Anderson, J.D.: Hypersonic and High-Temperature Gas Dynamics. AIAA Education Series. American Institute of Aeronautics and Astronautics, Inc. (2006) Google Scholar
  3. 3.
    Kanda, T., Masuya, G., Ono, F., Wakamatsu, Y.: Effect of Film Cooling/Regenerative Cooling on Scramjet Engine Performance. J. Prop. Pow. 10 (1994) 618–624 CrossRefGoogle Scholar
  4. 4.
    Goldstein, R., Eckert, E., Tsou, F., Haji-Sheikh, A.: Film Cooling with Air and Helium Injection Through a Rearward-Facing slot into a Supersonic Air Flow. AIAA J. 4 (1966) 981–985 CrossRefGoogle Scholar
  5. 5.
    Parthasarathy, K., Zakkay, V.: An Experimental Investigation of Turbulent Slot Injection at Mach 6. AIAA J. 8 (1970) 1302–1307 CrossRefGoogle Scholar
  6. 6.
    Cary Jr., A., Hefner, J.: Film-Cooling Effectiveness and Skin Friction in Hypersonic Turbulent Flow. AIAA J. 10 (1972) 1188–1193 CrossRefGoogle Scholar
  7. 7.
    Richards, B., Stollery, J.: Laminar Film Cooling Experiments in Hypersonic Flow. J. Aircraft 16 (1979) 177–181 CrossRefGoogle Scholar
  8. 8.
    Kanda, T., Ono, F., Saito, T., Takahashi, M., Wakamatsu, Y.: Experimental Studies of Supersonic Film Cooling with Shock Wave Interaction. AIAA J. 34 (1996) 265–271 CrossRefGoogle Scholar
  9. 9.
    Holden, M., Nowak, R., Olsen, G., Rodriguez, K.: Experimental Studies of Shock Wave/Wall Jet Interaction in Hypersonic Flow. In: 28th Aerospace Sciences Meeting. AIAA Paper 90-0607, Reno, NV (1990) Google Scholar
  10. 10.
    O’Connor, J., Haji-Sheikh, A.: Numerical Study of Film Cooling in Supersonic Flow. AIAA J. 30 (1992) 2426–2435 CrossRefGoogle Scholar
  11. 11.
    Sarkar, S.: Numerical Simulation of Supersonic Slot Injection Into a Turbulent Supersonic Stream. International J. of Turbo and Jet-Engines 17 (2000) 227–240 CrossRefGoogle Scholar
  12. 12.
    Takita, K., Masuya, G.: Effects of Combustion and Shock Impingement on Supersonic Film Cooling by Hydrogen. AIAA J. 38 (2000) 1899–1906 CrossRefGoogle Scholar
  13. 13.
    Peng, W., Jiang, P.X.: Influence of Shock Waves on Supersonic Film Cooling. J. of Spacecraft and Rockets 46 (2009) 67–73 CrossRefGoogle Scholar
  14. 14.
    Arnold, R., Suslov, D., Haidn, O.J.: Film Cooling of Accelerated Flow in a Subscale Combustion Chamber. J. Prop. Pow. 25 (2009) 443–451 CrossRefGoogle Scholar
  15. 15.
    Mitani, T., Ueda, S., Tani, K., Sato, S., Miyajima, H.: Validation Studies of Scramjet Nozzle Performance. J. Prop. Pow. 9 (1993) 725–730 CrossRefGoogle Scholar
  16. 16.
    Scheuermann, T., Banica, M., Chun, J., von Wolfersdorf, J.: Eindimensionale Untersuchungen zur gestuften Brennstoffeinbringung in einer Scramjet-Brennkammer. In: Deutscher Luft- und Raumfahrtkongress 2008. Number DLRK2008-81208, Darmstadt (2008) Google Scholar
  17. 17.
    Bowersox, R., Schetz, J.: Compressible Turbulence Measurements in a High-Speed High-Reynolds-number Mixing Layer. AIAA J. 32 (1994) 758–764 CrossRefGoogle Scholar
  18. 18.
    Juhany, K., Hunt, M., Sivo, J.: Influence of Injectant Mach Number and Temperature on Supersonic Film Cooling. J. of Thermophysics and Heat Transfer 8 (1994) 59–67 CrossRefGoogle Scholar
  19. 19.
    Boris, J., Grinsteina, F., Orana, E., Kolbea, R.: New Insights into Large Eddy Simulation. Fluid Dynamics Research 10 (1992) 199–228 CrossRefGoogle Scholar
  20. 20.
    Liou, M., Steffen, C.J.: A New Flux Splitting Scheme. J. Comput. Phys. 107 (1994) 23–39 CrossRefMathSciNetGoogle Scholar
  21. 21.
    Meinke, M., Schröder, W., Krause, E., Rister, T.: A Comparison of Second- and Sixth-Order Methods for Large-Eddy Simulations. Comp. Fluids 31 (2002) 695–718 CrossRefzbMATHGoogle Scholar
  22. 22.
    Alkishriwi, N., Meinke, M., Schröder, W.: A Large-Eddy Simulation Method for Low Mach Number Flows Using Preconditioning and Multigrid. Comp. Fluids 35 (2006) 1126–1136 CrossRefzbMATHGoogle Scholar
  23. 23.
    El-Askary, W., Schröder, W., Meinke, M.: LES of compressible wall-bounded flows. Technical Report 2003-3554, AIAA (2003) Google Scholar
  24. 24.
    Lund, T.S., Wu, X., Squires, K.D.: Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations. 140 (1998) 233–258 Google Scholar
  25. 25.
    Juhany, K.: Supersonic Film Cooling Including the Effect of Shock Wave Interaction. PhD thesis, California Institute of Technology Pasadena, California (1994) Google Scholar
  26. 26.
    Seban, R.A., Back, L.H.: Velocity and Temperature Profiles in Turbulent Boundary Layers with Tangential Injection. J. of Heat Transfer 84 (1962) 45–54 Google Scholar
  27. 27.
    Jeong, J., Hussain, F.: On the Identification of a Vortex. J. Fluid Mech. 285 (1995) 69–94 CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Pirozzoli, S., Grasso, F., Gatski, T.B.: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at m=2.25. Phys. Fluids 16 (2004) 530–545 CrossRefGoogle Scholar
  29. 29.
    Hyde, C., Smith, B., Schetz, J., Walker, D.A.: Turbulence Measurements for Heated Gas Slot Injection in Supersonic Flow. AIAA J. 28 (1990) 1605–1614 CrossRefGoogle Scholar
  30. 30.
    Guarini, S.E., Moser, R.D., Shariff, K., Wray, A.: Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414 (2000) 1–33 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Konopka
    • 1
  • Matthias Meinke
    • 1
  • Wolfgang Schröder
    • 1
  1. 1.Institute of AerodynamicsRWTH Aachen UniversityAachenGermany

Personalised recommendations