Numerical Simulation of Particle-Laden Turbulent Flows Using LES

  • Michael Breuer
  • Michael Alletto


The paper is concerned with the simulation of particle-laden two-phase flows based on the Euler-Lagrange approach. The methodology developed is driven by two compulsory requirements: (i) the necessity to tackle complex turbulent flows by eddy-resolving schemes such as large-eddy simulation (LES); (ii) the demand to predict dispersed multiphase flows at high mass loadings. First, a highly efficient particle tracking algorithm was developed working on curvilinear, block-structured grids in general complex 3D domains. Second, to allow the prediction of dense two-phase flows, the fluid-particle interaction (two-way coupling) as well as particle-particle collisions (four-way coupling) had to be taken into account. For the latter instead of a stochastic collision model, in the present study a deterministic collision model is considered. Nevertheless, the computational burden is minor owing to the concept of virtual cells, where only adjacent particles are taken into account in the search for potential collision partners. The methodology is applied to different test cases. Here results of the two-phase flows in a plane channel and in a model combustion chamber are reported. The influence of particle-fluid (two-way coupling) as well as particle-particle interactions (four-way coupling) is investigated for a mass loadings of 22%. The computational results are compared with experimental measurements and an encouraging agreement is found. Results for a higher mass loading of 110% will be published in a subsequent report. The methodology developed will be further extended in the near future, e.g., to account for rough walls. Then even more challenging test cases will be tackled.


High Performance Computing Mass Loading Smooth Particle Hydrodynamic Turbulent Channel Flow Virtual Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apte, S.V., Mahes, K., Moin, P., Oefelein, J.C.: Large-Eddy Simulation of Swirling Particle-Laden Flows in a Coaxial-Jet Combustor, Int. J. Multiphase Flow, vol. 29, 1311–1331, (2003). CrossRefzbMATHGoogle Scholar
  2. 2.
    Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved Subgrid-Scale Models for Large Eddy Simulations, AIAA Paper, 80–1357, (1980). Google Scholar
  3. 3.
    Boree, J., Ishima, T., Flour, I.: The Effects of Mass Loading and Inter-Particle Collision on the Development of Polydispersed Two-Phase Flow Downstream of a Confined Bluff Body, J. Fluid Mech., vol. 443, 129–165, (2001). CrossRefzbMATHGoogle Scholar
  4. 4.
    Benson, M., Tanaka, T., Eaton, J.K.: Effects of Wall Roughness on Particle Velocities in a Turbulent Channel Flow, Trans. ASME J. Fluids Eng., vol. 150, 250–256, (2005). CrossRefGoogle Scholar
  5. 5.
    Bird, G.A.: Molecular Gas Dynamics, Clarendon, Oxford, (1976). Google Scholar
  6. 6.
    Breuer, M.: Large Eddy Simulation of the Sub-Critical Flow Past a Circular Cylinder: Numerical and Modeling Aspects, Int. J. for Numer. Methods Fluids, vol. 28, 1281–1302, (1998). CrossRefzbMATHGoogle Scholar
  7. 7.
    Breuer, M.: Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern, Habilitationsschrift, Universität Erlangen-Nürnberg, Shaker, Aachen, (2002). Google Scholar
  8. 8.
    Breuer, M., Baytekin, H.T., Matida, E.A.: Prediction of Aerosol Deposition in 90 ∘ Bends Using LES and an Efficient Lagrangian Tracking Method, J. Aerosol Science, vol. 37(11), 1407–1428, (2006). CrossRefGoogle Scholar
  9. 9.
    Breuer, M., Matida, E.A., Delgado, A.: Prediction of Aerosol Drug Deposition Using an Eulerian-Lagrangian Method Based on LES, Int. Conference on Multiphase Flow, ICMF 2007, July 9–13, 2007, Leipzig, Germany, (2007). Google Scholar
  10. 10.
    Breuer, M., Lammers, P., Zeiser, Th., Hager, G., Wellein, G.: Direct Numerical Simulation of Turbulent Flow Over Dimples—Code Optimization for NEC SX-8 plus Flow Results, High Performance Computing in Science and Engineering 2007, Transaction of the High Performance Computing Center Stuttgart, Oct. 4–5, 2007, eds. Nagel, W.E., Kröner, D., Resch, M., 303–318, Springer, Berlin, ISBN 978-3-540-74738-3, (2008). CrossRefGoogle Scholar
  11. 11.
    Chen, M., Kontomaris, K., McLaughlin, J.B.: Direct Numerical Simulation of Droplet Collisions in a Turbulent Channel Flow. Part 1: Collision Algorithm, Int. J. Multiphase Flow, vol. 24, 1079–1103, (2007). CrossRefGoogle Scholar
  12. 12.
    Crowe, C.T., Sharma, M.P., Stock, D.E.: The Particle-Source-In-Cell (PSI-CELL) Model for Gas-Droplet Flows, Trans. ASME J. Fluids Eng., vol. 99, 325–332, (1977). CrossRefGoogle Scholar
  13. 13.
    Fugakata, K., Zahrai, S., Kondo, S., Bark, F.H.: Anomalous Velocity Fluctuations in Particulate Turbulent Channel Flow, Int. J. Multiphase Flow, vol. 27, 701–719, (2001). CrossRefGoogle Scholar
  14. 14.
    Kulick, J.D., Fessler, J.R., Eaton, J.K.: Particle Response and Turbulence Modification in Fully Developed Channel Flow, J. Fluid Mech., vol. 277, 109–134, (1994). CrossRefGoogle Scholar
  15. 15.
    Kussin, J., Sommerfeld, M.: Experimental Studies on Particle Behaviour and Turbulence Modification in Horizontal Channel Flow with Different Wall Roughness, Experiments in Fluids, vol. 33, 143–159, (2002). Google Scholar
  16. 16.
    Lammers, P., Wellein, G., Zeiser, Th., Hager, G., Breuer, M.: Have the Vectors the Continuing Ability to Parry the Attack of the Killer Micros?, High Performance Computing on Vector Systems, Proc. of the High Performance Computing Center Stuttgart, March 17–18, 2005, eds. Resch, M., Bönisch, Th., Benkert, K., Furui, T., Seo, Y., Bez, W., 25–37, Springer, Berlin, ISBN-10 3-540-29124-5, (2006). CrossRefGoogle Scholar
  17. 17.
    Marchioli, C., Armenio, V., Soldati, A.: Simple and Accurate Scheme for Fluid Velocity Interpolation for Eulerian-Lagrangian Computation of Dispersed Flow in 3D Curvilinear Grids, Computers & Fluids, vol. 36, 1187–1198, (2007). CrossRefzbMATHGoogle Scholar
  18. 18.
    Maxey, M.R., Riley, J.J.: Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow, Phys. Fluids, vol. 26, 883–889, (1983). CrossRefzbMATHGoogle Scholar
  19. 19.
    McLaughlin, J.B.: Inertial Migration of a Small Sphere in Linear Shear Flows, J. Fluid Mech., vol. 224, 261–274, (1991). CrossRefzbMATHGoogle Scholar
  20. 20.
    Paris, A.D., Eaton, J.K.: Turbulence Attenuation in a Particle-Laden Channel Flow, Report TSD-137, Dept. of Mech. Eng., Stanford University, (2001). Google Scholar
  21. 21.
    Pozorski, J., Sourabh, V.: Filtered Particle Tracking in Isotropic Turbulence and Stochastic Modeling of Subgrid-Scale Dispersion, Int. J. Multiphase Flow, vol. 35, 118–128, (2009). CrossRefGoogle Scholar
  22. 22.
    Riber, E., Moureau, V., Garcia, M., Poinsot, T., Simonin, O.: Evaluation of Numerical Strategies for Large-Eddy Simulation of Particulate Two-Phase Recirculating Flow, J. Comput. Phys., vol. 228, 539–564, (2009). CrossRefzbMATHGoogle Scholar
  23. 23.
    Schiller, L., Naumann, A.: A Drag Coefficient Correlation, VDI Zeitschrift, vol. 77, 318–320, (1933). Google Scholar
  24. 24.
    Smagorinsky, J.: General Circulation Experiments with the Primitive Equations. I: The Basic Experiment, Month. Weath. Rev., vol. 91, 99–165, (1963). CrossRefGoogle Scholar
  25. 25.
    Segura, J.C., Oefelein, J.C., Eaton, J.K.: Predictive Capabilities of Particle-Laden Large Eddy Simulation, Report TSD-156, Dept. of Mech. Eng., Stanford University, (2004). Google Scholar
  26. 26.
    Sommerfeld, M.: Theoretical and Experimental Modelling of Particulate Flows, Lecture Series 2000-06, von Karman Institute for Fluid Dynamics, (2000). Google Scholar
  27. 27.
    Viccione, G., Bovolin, V., Pugliese Carratelli, E.: Defining and Optimizing Algorithms for Neighboring Particle Identification in SPH Fluid Simulations, Int. J. Numer. Meth. Fluids, vol. 58, 625–638, (2008). CrossRefzbMATHGoogle Scholar
  28. 28.
    Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T., Tsuji, Y.: Large-Eddy Simulation of Turbulent Gas-Particle Flow in a Vertical Channel: Effect of Considering Inter-Particle Collisions, J. Fluid Mech., vol. 442, 303–334, (2001). CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Professur für Strömungsmechanik, Institut für MechanikHelmut-Schmidt-Universität HamburgHamburgGermany

Personalised recommendations