Advertisement

Optimization of Chaotic Micromixers Using Finite Time Lyapunov Exponents

  • Aniruddha Sarkar
  • Ariel Narváez
  • Jens Harting

Abstract

In microfluidics mixing of different fluids is a highly non-trivial task due to the absence of turbulence. The dominant process allowing mixing at low Reynolds number is therefore diffusion, thus rendering mixing in plain channels very inefficient. Recently, passive chaotic micromixers such as the staggered herringbone mixer were developed, allowing efficient mixing of fluids by repeated stretching and folding of the fluid interfaces. The optimization of the geometrical parameters of such mixer devices is often performed by time consuming and expensive trial and error experiments. We demonstrate that the application of the lattice Boltzmann method to fluid flow in highly complex mixer geometries together with standard techniques from statistical physics and dynamical systems theory can lead to a highly efficient way to optimize micromixer geometries. The strategy applies massively parallel fluid flow simulations inside a mixer, where massless and non-interacting tracer particles are introduced. By following their trajectories we can calculate finite time Lyapunov exponents in order to quantify the degree of chaotic advection inside the mixer. The current report provides a review of our results published in (Sarkar, Narváez, and Harting, 2010) together with additional details on the simulation methodology.

Keywords

Lyapunov Exponent Tracer Particle Lattice Boltzmann Method Half Cycle Lattice Boltzmann 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Sarkar, A. Narváez, and J. Harting. Quantification of the degree of mixing in chaotic micromixers using finite time Lyapunov exponents. Submitted for publication, arXiv:1012.5549, 2010.
  2. 2.
    M. A. Burns. Microfabricated structures for integrated DNA analysis. Proc. National Acad. Sci. USA, 68(93):5556–5561, 1996. CrossRefGoogle Scholar
  3. 3.
    P. Watts and S. Haswell. Microfluidic combinatorial chemistry. Curr. Opin. Chem. Biol., 7:380–387, 1996. CrossRefGoogle Scholar
  4. 4.
    V. Hessel, H. Loewe, and F. Schoenfeld. Micromixers—A review on active and passive mixing principles. Chem. Eng. Sci., 60:2479–2501, 2005. CrossRefGoogle Scholar
  5. 5.
    H. Aref. Stirring by chaotic advection. J. Fluid Mech., 143:1–21, 1984. zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Kim and A. Beskok. Quantification of chaotic strength and mixing in a micro fluidic system. J. Micromech. Microeng., 17:2197–2210, 2007. CrossRefGoogle Scholar
  7. 7.
    C. Zhang, D. Xing, and Y. Li. Micropumps, microvalves and micromixers within pcr microfluidic chips: Advances and trends. Biotech. Advances, 25:483–514, 2007. CrossRefGoogle Scholar
  8. 8.
    F. G. Bessoth, A. de Mello, and A. Manz. Microstructure for efficient continuous flow mixing. Analyt. Comm., 36:213–215, 1999. CrossRefGoogle Scholar
  9. 9.
    D. Gobby, P. Angeli, and A. Gavriliidis. Mixing characteristics of a T-type microfluidic mixers. J. Micromech. Microeng., 11:126–132, 2001. CrossRefGoogle Scholar
  10. 10.
    Y. Mingquiang and H. Bau. The kinematics of bend-induced stirring in micro-conduits. In Proc. ASME Intl. Mech. Sys. (MEMS’97), Nagoya, Japan, pp. 96–101, 2000. Google Scholar
  11. 11.
    A. Strook, S. Dertinger, A. Adjari, I. Mezic, H. Stone, and G. Whiteside. Chaotic mixer for microchannels. Science, 295:647–651, 2002. CrossRefGoogle Scholar
  12. 12.
    T. K. Kang, M. K. Singh, T. H. Kwon, and P. D. Anderson. Chaotic mixing using periodic and aperiodic sequences of mixing protocols. Microfluids and Nanofluids, 4(6):589–599, 2007. CrossRefGoogle Scholar
  13. 13.
    C. Ziemann, L. A. Smith, and J. Kurths. Localized Lyapunov exponents and the prediction of predictability. Phys. Lett. A, 4:237–251, 2000. CrossRefGoogle Scholar
  14. 14.
    G. Lapeyre. Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence. Chaos, 12(3):688–698, 2002. zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, London, 2001. zbMATHGoogle Scholar
  16. 16.
    Y. H. Qian, D. d’Humieres, and P. Lallemand. Lattice BGK models for Navier-Stokes equation. Europhys. Lett., 17(6):479–484, 1992. zbMATHCrossRefGoogle Scholar
  17. 17.
    P. Bhatnagar, E. Gross, and M. Krook. A model for collision process in gases. Small amplitude process in charged and neutral one-component systems. Phys. Rev., 94:511–525, 1954. zbMATHCrossRefGoogle Scholar
  18. 18.
    D. Ruiquiang and L. Jianping. Nonlinear finite-time Lyapunov exponent and predictability. Phys. Lett. A, 364:396–400, 2007. CrossRefGoogle Scholar
  19. 19.
    X. Tang and A. Boozer. Finite time Lyapunov exponent and chaotic advection-diffusion equation. Physica D, 95:283–305, 1996. zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Y. Lee, C. Shih, P. Tabeling, and C.-M. Ho. Experimental study and non-linear dynamics of time-periodic micro chaotic mixers. J. Fluid Mech., 575:425–448, 2007. zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Physica D, 16:285–317, 1985. zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    X. Shan and H. Chen. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E, 47(3):1815, 1993. CrossRefGoogle Scholar
  23. 23.
    X. Shan and H. Chen. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E, 49(4):2941, 1994. CrossRefGoogle Scholar
  24. 24.
    H. Chen, B. M. Boghosian, P. V. Coveney, and M. Nekovee. A ternary lattice Boltzmann model for amphiphilic fluids. Proc. R. Soc. Lond. A, 456:2043, 2000. zbMATHCrossRefGoogle Scholar
  25. 25.
    J. Harting, M. Harvey, J. Chin, M. Venturoli, and P. V. Coveney. Large-scale lattice Boltzmann simulations of complex fluids: Advances through the advent of computational grids. Phil. Trans. R. Soc. Lond. A, 363:1895–1915, 2005. CrossRefGoogle Scholar
  26. 26.
    G. Giupponi, J. Harting, and P. V. Coveney. Emergence of rheological properties in lattice Boltzmann simulations of gyroid mesophases. Europhys. Lett., 73:533–539, 2006. CrossRefGoogle Scholar
  27. 27.
    N. González-Segredo, J. Harting, G. Giupponi, and P. V. Coveney. Stress response and structural transitions in sheared gyroidal and lamellar amphiphilic mesophases: Lattice-Boltzmann simulations. Phys. Rev. E, 73:031503, 2006. CrossRefGoogle Scholar
  28. 28.
    A. Narváez, T. Zauner, F. Raischel, R. Hilfer, and J. Harting. Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations. J. Stat. Mech: Theor. Exp., 2010:P211026, 2010. CrossRefGoogle Scholar
  29. 29.
    A. Narváez and J. Harting. A D3Q19 lattice-Boltzmann pore-list code with pressure boundary conditions for permeability calculations. Advances in Applied Mathematics and Mechanics, 2:685, 2010. MathSciNetGoogle Scholar
  30. 30.
    J. Chin, J. Harting, S. Jha, P. V. Coveney, A. R. Porter, and S. M. Pickles. Steering in computational science: Mesoscale modelling and simulation. Contemporary Physics, 44(5):417–434, 2003. CrossRefGoogle Scholar
  31. 31.
    J. Harting, C. Kunert, and H. Herrmann. Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels. Europhys. Lett., 75:328–334, 2006. CrossRefGoogle Scholar
  32. 32.
    C. Kunert and J. Harting. Roughness induced apparent boundary slip in microchannel flows. Phys. Rev. Lett., 99:176001, 2007. CrossRefGoogle Scholar
  33. 33.
    J. Hyväluoma and J. Harting. Slip flow over structured surfaces with entrapped microbubbles. Phys. Rev. Lett., 100:246001, 2008. CrossRefGoogle Scholar
  34. 34.
    C. Kunert, J. Harting, and O. I. Vinogradova. Random-roughness hydrodynamic boundary conditions. Phys. Rev. Lett., 105:016001, 2010. CrossRefGoogle Scholar
  35. 35.
    A. Komnik, J. Harting, and H. J. Herrmann. Transport phenomena and structuring in shear flow of suspensions near solid walls. J. Stat. Mech: Theor. Exp., P12003, 2004. Google Scholar
  36. 36.
    M. Hecht, J. Harting, T. Ihle, and H. J. Herrmann. Simulation of claylike colloids. Phys. Rev. E, 72:011408, 2005. CrossRefGoogle Scholar
  37. 37.
    J. Harting, H. J. Herrmann, and E. Ben-Naim. Anomalous distribution functions in sheared suspensions. Europhys. Lett., 83:30001, 2008. CrossRefGoogle Scholar
  38. 38.
    F. Janoschek, F. Toschi, and J. Harting. Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E, 82:056710, 2010. CrossRefGoogle Scholar
  39. 39.
    F. Jansen and J. Harting. From Bijels to Pickering emulsions: A lattice Boltzmann study. Phys. Rev. E, 83:046707, 2011. CrossRefGoogle Scholar
  40. 40.
    D. Groen, O. Henrich, F. Janoschek, P. Coveney, and J. Harting. Lattice-Boltzmann methods in fluid dynamics: Turbulence and complex colloidal fluids. In W. F. Bernd Mohr, editor, Jülich Blue Gene/P Extreme Scaling Workshop 2011. Jülich Supercomputing Centre, 52425 Jülich, Germany, apr 2011. FZJ-JSC-IB-2011-02; http://www2.fz-juelich.de/jsc/docs/autoren2011/mohr1/.
  41. 41.
    J. Harting, F. Jansen, S. Frijters, F. Janoschek, and F. Günther. Nanoparticles as emulsion stabilizers. inSiDE, 9(1):48, 2011. Google Scholar
  42. 42.
    A. D. Stroock and G. J. McGraw. Investigation of the staggered herringbone mixer with a simple analytical model. Phil. Trans. R. Soc. Lond. A, 362:923–935, 2004. CrossRefGoogle Scholar
  43. 43.
    C. Li and T. Chen. Simulation and optimization of chaotic micromixer using lattice Boltzmann method. Sensors and Actuators B, 106:871–877, 2005. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aniruddha Sarkar
    • 1
  • Ariel Narváez
    • 1
    • 2
  • Jens Harting
    • 1
    • 2
  1. 1.Institute for Computational PhysicsUniversity of StuttgartStuttgartGermany
  2. 2.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations