A Computation Technique for Rigid Particle Flows in an Eulerian Framework Using the Multiphase DNS Code FS3D

  • Philipp Rauschenberger
  • Jan Schlottke
  • Bernhard Weigand


A new technique to simulate the motion of rigid particles was implemented in the in-house VOF based code FS3D with the aim of studying freezing processes of undercooled water droplets in the atmosphere. Particle deformation is determined and terminal velocities of a free falling sphere are compared to analytic results for validation. The computations were performed on the NEC SX-9 platform of the HLRS.


Coarse Grid High Performance Computing Rigid Body Motion Terminal Velocity Rigid Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier-Stokes equations. Journal of Computational Physics 85(2), 257–283 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bengel, G., Baun, C., Kunze, M., Stucky, K.U.: Masterkurs Parallele und Verteilte Systeme. Vieweg+Teubner, Wiesbaden (2008) Google Scholar
  3. 3.
    Carlson, M.: Rigid, Melting and Flowing Fluid. Ph.D. thesis, College of Computing Georgia Institute of Technology (2004) Google Scholar
  4. 4.
    Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Dover Publications, Inc., Mineola, New York (2005) Google Scholar
  5. 5.
    Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 8(12), 2182–2189 (1965) CrossRefzbMATHGoogle Scholar
  6. 6.
    Patankar, N.A.: A formulation for fast computations of rigid particulate flows. Center for Turbulence Research, Annual Research Briefs, pp. 185–196 (2001) Google Scholar
  7. 7.
    Patankar, N.A., Singh, P., Joseph, D.D., Glowinski, R., Pan, T.W.: A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow 26, 1509–1524 (2000) CrossRefzbMATHGoogle Scholar
  8. 8.
    Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. Journal of Computational Physics 141(2), 112–152 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Rieber, M.: Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen. Ph.D. thesis, University of Stuttgart (2004) Google Scholar
  10. 10.
    Rieber, M., Graf, F., Hase, M., Roth, N., Weigand, B.: Numerical simulation of moving spherical and strongly deformed droplets. Proceedings ILASS-Europe, pp. 1–6 (2000) Google Scholar
  11. 11.
    Roache, P.J.: Perspective – a method for uniform reporting of grid refinement studies. Journal of Fluids Engineering-transactions of the ASME 116(3), 405–413 (1994) CrossRefGoogle Scholar
  12. 12.
    Schlottke, J., Weigand, B.: Direct numerical simulation of evaporating droplets. Journal of Computational Physics 227(10), 5215–5237 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Sharma, N., Patankar, N.A.: A fast computation technique for the direct numerical simulation of rigid particulate flows. Journal of Computational Physics 205, 439–457 (2005) CrossRefzbMATHGoogle Scholar
  14. 14.
    Soga, T., Musa, A., Okabe, K., Komatsu, K., Egawa, R., Takizawa, H., Kobayashi, H., Takahashi, S., Sasaki, D., Nakahashi, K.: Performance of SOR methods on modern vector and scalar processors. Computers & Fluids 45(1), 215–221 (2011). CrossRefzbMATHGoogle Scholar
  15. 15.
    Weking, H., Huber, C., Weigand, B.: Direct numerical simulation of single gaseous bubbles in viscous liquids. HLRS, High Performance Computing in Science & Engineering, pp. 1–13 (2009) Google Scholar
  16. 16.
    Wesseling, P.: An Introduction to Multigrid Methods. John Wiley & Sons (1991) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Philipp Rauschenberger
    • 1
  • Jan Schlottke
  • Bernhard Weigand
  1. 1.Institut für Thermodynamik der Luft- und RaumfahrtUniversität StuttgartStuttgartGermany

Personalised recommendations