Skip to main content

Highly Efficient and Scalable Software for the Simulation of Turbulent Flows in Complex Geometries

  • Conference paper
High Performance Computing in Science and Engineering '11

Abstract

This paper investigates the efficiency of simulations for compressible turbulent flows with noise generation in complex geometries. It analyzes two different approaches and their suitability with respect to quality as well as turn around times required in industrial DoE processes. One approach makes use of a high order discontinuous Galerkin scheme. The efficiency of high order schemes on coarser meshes is compared to lower order schemes on finer meshes. The second approach is a 2nd order Finite Volume scheme, which employs a zonal coupling of LES and RANS to enhance efficiency in turbulence simulation. The schemes are applied to three industrial test cases which are described. Difficulties on HPC systems, especially load-balancing, MPI and IO, are pointed out and solutions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Utzmann, T. Schwartzkopff, C. Munz, and M. Dumbser, Heterogeneous domain decomposition for computational aero-acoustics, AIAA Journal, Vol. 44, pp. 2231–2250, (2006).

    Article  Google Scholar 

  2. O. Schönrock, Aeroacoustic simulation using SAS-SST turbulence model in ANSYS CFX, Proceedings of Int. Conf. on Jets, Wakes and Separated Flows, ICJWSF-2008, (2008).

    Google Scholar 

  3. F. Lörcher, Predictor Corrector DG, PhD thesis, University of Stuttgart, (2008).

    Google Scholar 

  4. F. Lörcher, G. Gassner, and C.-D. Munz, A discontinuous Galerkin scheme based on a space-time expansion I. Inviscid compressible flow in one space dimension, J. Sci. Comp., Vol. 32, pp. 175–199, (2007).

    Article  MATH  Google Scholar 

  5. G. Gassner, F. Lörcher, and C.-D. Munz, A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions, J. Sci. Comp., Vol. 34, pp. 260–286, (2007).

    Article  Google Scholar 

  6. G. Gassner, F. Lörcher, and C.-D. Munz, An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, J. Comput. Phys., Vol. 227, pp. 5649–5670, (2008).

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Gassner, M. Dumbser, F. Hindenlang, and C.-D. Munz, Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J. Comput. Phys., in press, corrected proof, (2010).

    Google Scholar 

  8. F. Hindenlang, G. Gassner, T. Bolemann, and C.-D. Munz, Unstructured high order grids and their application in discontinuous Galerkin methods, Conference Proceedings, V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal, (2010).

    Google Scholar 

  9. S. Hickel, Implicit Turbulence Modeling for Large-eddy Simulation, PhD thesis, TU Dresden, (2005).

    Google Scholar 

  10. M.E. Brachet, Direct simulation of three-dimensional turbulence in the Taylor–Green vortex, Fluid Dynamics Research, Vol. 8, pp. 1–8, (1991).

    Article  Google Scholar 

  11. P.-O. Persson and J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, Proc. of the 44th AIAA Aerospace Sciences Meeting and Exhibit, (2006).

    Google Scholar 

  12. M.-S. Liou and C.J. Steffen, A new flux splitting scheme, Journal of Computational Physics, Vol. 107, pp. 23–39, (1993).

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Meinke, W. Schröder, E. Krause, and Th. Rister, A comparison of second- and sixth-order methods for large-eddy simulations, Computers and Fluids, Vol. 31, pp. 695–718, (2002).

    Article  MATH  Google Scholar 

  14. P. Boris, F.F. Grinstein, E.S. Oran, and R.L. Kolbe, New insights into large eddy simulation, Fluid Dynamics Research, Vol. 10, pp. 199–228, (1992).

    Article  Google Scholar 

  15. R. Ewert and W. Schröder, Acoustic perturbation equations based on flow decomposition via source filtering, Journal of Computational Physics, Vol. 188, pp. 365–398, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Ewert and W. Schröder, On the simulation of trailing edge noise with a hybrid LES/APE method, Journal of Sound and Vibration, Vol. 270, pp. 509–524, (2004).

    Article  Google Scholar 

  17. D. König, S.R. Koh, M. Meinke, and W. Schröder, Two-step simulation of slat noise, Computers and Fluids, Vol. 39 nr. 3, pp. 512–524, (2010).

    Article  Google Scholar 

  18. A. Spille, H.-J. Kaltenbach, Generation of turbulent inflow data with a prescribed shear-stress profile, Third AFSOR Conference on DNS and LES, (2001).

    Google Scholar 

  19. N. Jarrin, N. Benhamadouche, S. Laurence, D. Prosser, A synthetic-eddy-method for generating inflow conditions for large-eddy simulations, Journal of Heat and Fluid Flow, Vol. 27, pp. 585–593, (2006).

    Article  Google Scholar 

  20. R. Wokoeck, N. Krimmelbein, J. Ortmanns, V. Ciobaca, R. Radespiel, and A. Krumbein, RANS simulation and experiments on the stall behaviour of an airfoil with laminar separation bubbles, AIAA Paper AIAA-2006-0244, (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Harlacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harlacher, D.F. et al. (2012). Highly Efficient and Scalable Software for the Simulation of Turbulent Flows in Complex Geometries. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_22

Download citation

Publish with us

Policies and ethics