Skip to main content

Discontinuous Galerkin for High Performance Computational Fluid Dynamics (hpcdg)

  • Conference paper
High Performance Computing in Science and Engineering '11

Abstract

In this paper we present selected ongoing computations, performed on HLRS clusters. Three efficient explicit Discontinuous Galerkin schemes, suitable for high performance calculations, are employed to perform direct numerical simulations of isotropic turbulence and turbulent channel flow, large eddy simulations of cavity-flows as well as hybrid simulations of aeroacoustic phenomena. The computations were performed on hundreds to thousands computer cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1st Edition, Springer, Berlin, 2007.

    Google Scholar 

  2. F. Lörcher, Predictor Corrector DG, PhD thesis, University of Stuttgart, (2008).

    Google Scholar 

  3. F. Lörcher, G. Gassner and C.-D. Munz, A discontinuous Galerkin scheme based on a space-time expansion I. Inviscid Compressible flow in one space dimension, J. Sci. Comp., Vol. 32, pp. 175–199, (2007).

    Article  MATH  Google Scholar 

  4. G. Gassner, F. Lörcher and C.-D. Munz, A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions, J. Sci. Comp., Vol. 34, pp. 260–286, (2007).

    Article  Google Scholar 

  5. G. J. Gassner, F. Lörcher, C.-D. Munz and J. S. Hesthaven, Polymorphic nodal elements and their application in discontinuous Galerkin methods, Journal of Computational Physics, Vol. 228, Issue 5, (20 March 2009).

    Google Scholar 

  6. F. Lörcher, G. Gassner and C.-D. Munz, Arbitrary High Order Accurate Time Integration Schemes for Linear Problems, European Conference on Computational Fluid Dynamics, ECCOMAS CFD, (2006).

    Google Scholar 

  7. G. Gassner, F. Lörcher and C.-D. Munz, An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, J. Comput. Phys., Vol. 227, pp. 5649–5670, (2008).

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Gassner, M. Dumbser, F. Hindenlang and C.-D. Munz, Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J. Comput. Phys., In Press, Corrected Proof, (2010).

    Google Scholar 

  9. F. Hindenlang, G. Gassner, T. Bolemann and C.-D. Munz, Unstructured high order grids and their application in discontinuous Galerkin methods, Conference Proceedings, V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal, (2010).

    Google Scholar 

  10. S. Hickel, Implicit turbulence modeling for large-eddy simulation, PhD thesis, TU Dresden, (2005).

    Google Scholar 

  11. M. E. Brachet, Direct simulation of three-dimensional turbulence in the Taylor–Green vortex, Fluid Dynamics Research, Vol. 8, pp. 1–8, (1991).

    Article  Google Scholar 

  12. P.-O. Persson and J. Peraire, Sub-Cell Shock Capturing for Discontinuous Galerkin Methods, Proc. of the 44th AIAA Aerospace Sciences Meeting and Exhibit, (2006).

    Google Scholar 

  13. G. N. Coleman, J. Kim and R. D. Moser, A numerical study of turbulent supersonic isothermal-wall channel flow, J. Fluid Mech., Vol. 305, pp. 159–183, (1995).

    Article  MATH  Google Scholar 

  14. E. Lenormand, P. Sagaut and L. Ta Phuoc, Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number, Int. J. Numer. Meth. Fluids, Vol. 32, pp. 369–406, (2000).

    Article  MATH  Google Scholar 

  15. A. Birkefeld and C.-D. Munz, A Hybrid Method for CAA, Proc. of the 36 Jahrestagung für Akustik der Deutschen Gesellschaft für Akustik, DAGA, Berlin, (2010).

    Google Scholar 

  16. A. Birkefeld, A. Beck, M. Dumbser, C.-D. Munz, D. König and W. Schröder, Advances in the Computational Aeroacoustics with the Discontinuous Galerkin Solver NoisSol, Proc. of the 16th AIAA/CEAS Aeroacoustics Conference (31st AIAA Aeroacoustics Conference), Stockholm, (2010).

    Google Scholar 

  17. R. Ewert and W. Schröder, Acoustic perturbation equations based on flow decomposition via source filtering, Journal of Computational Physics, Vol. 188, pp. 365–398, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  18. J. W. Delfs, M. Bauer, R. Ewert, H. A. Grogger, M. Lummer and T. G. W. Lauke, Numerical Simulation of Aerodynamic Noise with DLR ’s aeroacoustic code PIANO, Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Aerodynamik und Strömungstechnik.

    Google Scholar 

  19. R. Ewert, (Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle mesh RPM) method, Computers & Fluids, Vol. 37, pp. 369–387, (2008).

    Article  MathSciNet  Google Scholar 

  20. S. Orszag, Numerical simulation of the Taylor-Green vortex, Computing Methods in Applied Sciences and Engineering Part 2, Lecture Notes in Computer Science, Vol. 11, pp. 50–64, (1974).

    Google Scholar 

  21. D. Fauconnier, Development of a Dynamic Finite Difference Method for Large-Eddy Simulation, PhD thesis, University of Gent, Belgium, (2009).

    Google Scholar 

  22. A. Beck, G. Gassner, I. Horenko, R. Klein and C.-D. Munz, Technischer Report im Rahmen des Schwerpunktprogramms 1276 (MetStroem), Lugano, Berlin, Stuttgart, (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Altmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Altmann, C. et al. (2012). Discontinuous Galerkin for High Performance Computational Fluid Dynamics (hpcdg). In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_21

Download citation

Publish with us

Policies and ethics