Advertisement

The SuperN-Project: Neutrino Hydrodynamics Simulations of Core-Collapse Supernovae

  • B. Müller
  • L. Hüdepohl
  • A. Marek
  • F. Hanke
  • H.-Th. Janka
Conference paper

Abstract

We give an overview of the challenges and the current status of our two-dimensional (core collapse) supernova modelling, and present the system of equations and the algorithm for its solution that are employed in our code Vertex. We also discuss the parallelisation of Vertex, give scaling results on different architectures, and report on our ongoing efforts to increase the computational efficiency of the code. Furthermore, we outline some of the recent results obtained from simulations performed on the NEC SX-8 at the HLRS. Specifically, we report our findings about the role of general relativity in core-collapse supernovae, about nucleosynthesis conditions in O-Ne-Mg core supernovae, and about the proto-neutron star cooling phase.

Keywords

Neutron Star Supernova Explosion Neutrino Emission Core Collapse Gravitational Wave Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rampp, M., Janka, H.T.: Spherically symmetric simulation with Boltzmann neutrino transport of core collapse and postbounce evolution of a 15M star. Astrophys. J. 539 (2000) L33–L36 CrossRefGoogle Scholar
  2. 2.
    Liebendörfer, M., Mezzacappa, A., Thielemann, F., Messer, O.E., Hix, W.R., Bruenn, S.W.: Probing the gravitational well: No supernova explosion in spherical symmetry with general relativistic Boltzmann neutrino transport. Phys. Rev. D 63 (2001) 103004–+ CrossRefGoogle Scholar
  3. 3.
    Bethe, H.A.: Supernova mechanisms. Reviews of Modern Physics 62 (1990) 801–866 CrossRefGoogle Scholar
  4. 4.
    Burrows, A., Goshy, J.: A theory of supernova explosions. Astrophys. J. 416 (1993) L75 CrossRefGoogle Scholar
  5. 5.
    Janka, H.T.: Conditions for shock revival by neutrino heating in core-collapse supernovae. Astron. Astrophys. 368 (2001) 527–560 CrossRefGoogle Scholar
  6. 6.
    Herant, M., Benz, W., Colgate, S.: Postcollapse hydrodynamics of SN 1987A – Two-dimensional simulations of the early evolution. Astrophys. J. 395 (1992) 642–653 CrossRefGoogle Scholar
  7. 7.
    Herant, M., Benz, W., Hix, W.R., Fryer, C.L., Colgate, S.A.: Inside the supernova: A powerful convective engine. Astrophys. J. 435 (1994) 339 CrossRefGoogle Scholar
  8. 8.
    Burrows, A., Hayes, J., Fryxell, B.A.: On the nature of core-collapse supernova explosions. Astrophys. J. 450 (1995) 830 CrossRefGoogle Scholar
  9. 9.
    Janka, H.T., Müller, E.: Neutrino heating, convection, and the mechanism of Type-II supernova explosions. Astron. Astrophys. 306 (1996) 167–+ Google Scholar
  10. 10.
    Thompson, C.: Accretional heating of asymmetric supernova cores. Astrophys. J. 534 (2000) 915–933 CrossRefGoogle Scholar
  11. 11.
    Blondin, J.M., Mezzacappa, A., DeMarino, C.: Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys. J. 584 (2003) 971–980 CrossRefGoogle Scholar
  12. 12.
    Scheck, L., Plewa, T., Janka, H.T., Kifonidis, K., Müller, E.: Pulsar recoil by large-scale anisotropies in supernova explosions. Phys. Rev. Letters 92 (2004) 011103–+ CrossRefGoogle Scholar
  13. 13.
    Foglizzo, T., Galletti, P., Scheck, L., Janka, H.T.: Instability of a stalled accretion shock: Evidence for the advective-acoustic cycle. Astrophys. J. 654 (2007) 1006–1021 CrossRefGoogle Scholar
  14. 14.
    Scheck, L., Kifonidis, K., Janka, H.T., Müller, E.: Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions. Astron. Astrophys. 457 (2006) 963–986 CrossRefGoogle Scholar
  15. 15.
    Scheck, L., Janka, H.T., Foglizzo, T., Kifonidis, K.: Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the supernova core. Astron. Astrophys. 477 (2008) 931–952 CrossRefGoogle Scholar
  16. 16.
    Keil, W., Janka, H.T., Müller, E.: Ledoux convection in protoneutron stars – A clue to supernova nucleosynthesis? Astrophys. J. 473 (1996) L111 CrossRefGoogle Scholar
  17. 17.
    Burrows, A., Lattimer, J.M.: The birth of neutron stars. Astrophys. J. 307 (1986) 178–196 CrossRefGoogle Scholar
  18. 18.
    Pons, J.A., Reddy, S., Prakash, M., Lattimer, J.M., Miralles, J.A.: Evolution of proto-neutron stars. Astrophys. J. 513 (1999) 780–804 CrossRefGoogle Scholar
  19. 19.
    Buras, R., Rampp, M., Janka, H.T., Kifonidis, K.: Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15M star. Astron. Astrophys. 447 (2006) 1049–1092 CrossRefGoogle Scholar
  20. 20.
    Müller, B., Janka, H., Dimmelmeier, H.: A new multi-dimensional general relativistic neutrino hydrodynamic code for core-collapse supernovae. I. Method and code tests in spherical symmetry. Astrophys. J. Suppl. 189 (2010) 104–133 CrossRefGoogle Scholar
  21. 21.
    Rampp, M., Janka, H.T.: Radiation hydrodynamics with neutrinos. Variable Eddington factor method for core-collapse supernova simulations. Astron. Astrophys. 396 (2002) 361–392 CrossRefGoogle Scholar
  22. 22.
    Müller, B., Janka, H., Marek, A., Dimmelmeier, H.: in preparation (2011) Google Scholar
  23. 23.
    Buras, R., Janka, H.T., Rampp, M., Kifonidis, K.: Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. II. Models for different progenitor stars. Astron. Astrophys. 457 (2006) 281–308 CrossRefGoogle Scholar
  24. 24.
    Marek, A., Janka, H.T.: Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability. Astrophys. J. 694 (2009) 664–696 CrossRefGoogle Scholar
  25. 25.
    Marek, A., Dimmelmeier, H., Janka, H.T., Müller, E., Buras, R.: Exploring the relativistic regime with Newtonian hydrodynamics: An improved effective gravitational potential for supernova simulations. Astron. Astrophys. 445 (2006) 273–289 CrossRefGoogle Scholar
  26. 26.
    Wanajo, S., Janka, H., Müller, E.: Electron-capture supernovae as the origin of elements beyond iron. Astrophys. J. 726 (2011) L15–+ CrossRefGoogle Scholar
  27. 27.
    Hüdepohl, L., Müller, B., Janka, H., Marek, A., Raffelt, G.G.: Neutrino signal of electron-capture supernovae from core collapse to cooling. Physical Review Letters 104 (2010) 251101–+ CrossRefGoogle Scholar
  28. 28.
    Fischer, T., Whitehouse, S.C., Mezzacappa, A., Thielemann, F., Liebendörfer, M.: Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron. Astrophys. 517 (2010) A80–+ CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. Müller
    • 1
  • L. Hüdepohl
    • 1
  • A. Marek
    • 1
  • F. Hanke
    • 1
  • H.-Th. Janka
    • 1
  1. 1.Max-Planck-Institut für AstrophysikGarching bei MünchenGermany

Personalised recommendations