Assessment of Conventional Droplet Evaporation Models for Spray Flames

  • M. R. G. Zoby
  • A. Kronenburg
  • S. Navarro-Martinez
  • A. J. Marquis


The present work investigates droplet evaporation rates in inert and reactive environments using fully resolved Direct Numerical Simulation (DNS). The droplets are arranged in regular droplet layers and the evaporation of two different fuels, n-heptane and kerosene, is investigated under engine like conditions. It is found that the performance of standard models fort he evaporation rate strongly depends on the modelling of the representative properties. The conventional 1/3-rule for their computation does not necessarily lead to good agreement between model and DNS. This holds for droplet evaporation in non-reacting and reacting environments. Conditions at the droplet surface would need to be more heavily weighted for better model performance. The droplet loading has a minor effect on the validity of the standard single droplet evaporation models.


Large Eddy Simulation Direct Numerical Simulation Evaporation Rate Droplet Diameter Droplet Evaporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Bilger, Combust. Flame 158 (2011) 191–202. CrossRefGoogle Scholar
  2. 2.
    R. I. Imaoka, W. A. Sirignano, Proc. Comb. Inst. 30 (2005) 1981–1989. CrossRefGoogle Scholar
  3. 3.
    K. K. Kuo, Principles of Combustion, John Wiley and Sons, Hoboken, New Jersey 1986. Google Scholar
  4. 4.
    S. S. Sazhin, Prog. Energy Combust. Sci. 32 (2006) 162–214. CrossRefGoogle Scholar
  5. 5.
    S. Osher, J. A. Sethian, J. Comp. Phys. 79 (1988) 12–49. CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    R. Fedkiw, T. Aslam, B. Merriman, S. Osher, J. Comp. Phys. 152 (1999) 457–492. CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    N. N. Yanenko, The Method of Fractional Steps, Springer, Berlin 1971. CrossRefzbMATHGoogle Scholar
  8. 8.
    R. P. Selvam, L. Lin, R. Ponnappan, Int. J. Heat and Mass Transfer 49 (2006) 4265–4278. CrossRefzbMATHGoogle Scholar
  9. 9.
    G. S. Jiang, D. Peng, J. Sci. Comput. 21 (2000) 2126–2143. zbMATHMathSciNetGoogle Scholar
  10. 10.
    D. Adalsteinsson, J. A. Sethian, J. Comp. Phys. 148 (1999) 2–22. CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    T. Menard, S. Tanguy, A. Berlemont, Int. J. Multiphase Flow 33 (2006) 510–524. CrossRefGoogle Scholar
  12. 12.
    W. P. Jones, F. di Mare, A. J. Marquis, LES-BOFFIN: Users Guide, Technical Memorandum, Imperial College, London (2002). Google Scholar
  13. 13.
    M. R. G. Zoby, S. Navarro-Martinez, A. Kronenburg, Proc. of the 4th European Combustion Meeting. Google Scholar
  14. 14.
    W. P. Jones, R. P. Lindstedt, Combustion and Flame 73 (1988) 233–249. CrossRefGoogle Scholar
  15. 15.
    Y. Renardy, M. Renardy, J. Comp. Phys. 183 (2002) 400–421. CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    E. R. A. Coyajee, M. Herrmann, B. Boersma, Proc. Summer Program, Center for Turbulence Research. Google Scholar
  17. 17.
    B. Abramzon, W. A. Sirignano, Int. J. Heat and Mass Transfer 32 (1989) 1605–1618. CrossRefGoogle Scholar
  18. 18.
    S. R. Turns, An Introduction to Combustion: Concepts and Applications, McGraw-Hill, Inc., New York 1996. Google Scholar
  19. 19.
    T. Lederlin, H. Pitsch, Annual Research Briefs 9, Center for Turbulence Research, Stanford (2008) 479–490. Google Scholar
  20. 20.
    M. C. Yuen, L. W. Chen, Comb. Sci. Tech. 14 (1976) 147–154. CrossRefGoogle Scholar
  21. 21.
    R. S. Miller, K. Harstad, J. Bellan, Int. J. Multiphase Flow 24 (1998) 1025–1055. CrossRefzbMATHGoogle Scholar
  22. 22.
    H. Nomura, Y. Ujiie, H. J. Rath, J. Sato, M. Kono, Proc. Comb. Inst. 26 (1996) 1267–1273. Google Scholar
  23. 23.
    M. Birouk, M. M. A. Al-Sood, Int. J. Thermal Sc. 49 (2010) 264–271. CrossRefGoogle Scholar
  24. 24.
    G. A. E. Godsave, Proc. Comb. Inst. (4) (1953) 818–830. Google Scholar
  25. 25.
    M. Birouk, C. Chauveau, I. Gokalp, Int. J. Heat Mass Transfer 44 (2000) 4593–4603. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. R. G. Zoby
    • 1
  • A. Kronenburg
    • 2
  • S. Navarro-Martinez
    • 1
  • A. J. Marquis
    • 1
  1. 1.Department of Mechanical EngineeringImperial College LondonLondonUK
  2. 2.Institut für Technische VerbrennungUniversity of StuttgartStuttgartGermany

Personalised recommendations