Atomistic Simulations of Electrolyte Solutions and Hydrogels with Explicit Solvent Models

  • Jonathan Walter
  • Stephan Deublein
  • Steffen Reiser
  • Martin Horsch
  • Jadran Vrabec
  • Hans Hasse

Abstract

Two of the most challenging tasks in molecular simulation consist in capturing the properties of systems with long-range interactions (e.g. electrolyte solutions), and of systems containing large molecules such as hydrogels. These tasks become particularly demanding when explicit solvent models are used. Therefore, massively parallel supercomputers are needed for both tasks.

For the development and optimization of molecular force fields and models, a large number of simulation runs have to be evaluated to obtain the sensitivity of thermodynamic properties with respect to the model parameters. This requires both an efficient work flow and, obviously, even more computational resources. The present work discusses the force field development for electrolytes regarding thermodynamic properties of their solutions. Furthermore, simulation results for the volume transition of hydrogels in solution containing electrolytes are presented. Both applications are of interest for engineering.

The present work proves that alkali and halogen ions can be reliably modeled by a LJ sphere with a superimposed charge located at the center of mass. The developed force fields allow predicting structural properties like the radial distribution function and the hydration number as well as thermodynamic properties like the density.

The self-diffusion coefficient of pure water was determined using various well known molecular models of water. The agreement with experimental data is often poor. Furthermore, ion self-diffusion coefficients were determined in simulations using these different water models. No correlation was observed between the accuracy of the self-diffusion coefficients of pure water and the accuracy of the self-diffusion coefficients of the ions. Further research effort in developing a new water model is needed to gain accurate predictions of transport properties in aqueous electrolyte systems. In addition, the study shows that the self-diffusion coefficient of ions in aqueous solutions is almost independent of the LJ energy parameter ϵ of the ion.

With the developed electrolyte models, it was possible to predict the volume transition of hydrogels in electrolyte solutions qualitatively and in some cases even quantitatively. The results also reproduce the effect of the Hofmeister series on the swelling of hydrogels.

Keywords

Electrolyte Solution Radial Distribution Function Water Model Molecular Simulation Atomistic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik, 64:253–287, 1921. MATHCrossRefGoogle Scholar
  2. 2.
    T. Darden, D. York, and L. Pedersen. Particle mesh Ewald – An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98:10089–10092, 1993. CrossRefGoogle Scholar
  3. 3.
    J. W. Eastwood, R. W. Hockney, and D. N. Lawrence. P3M3DP – The 3-dimensional periodic particle-particle/particle-mesh program. Computer Physics Communications, 19:215–261, 1980. CrossRefGoogle Scholar
  4. 4.
    B. G. Rao and U. C. Singh. A free-energy perturbation study of solvation in methanol and dimethyl-sulfoxide. Journal of the American Chemical Society, 112:3803–3811, 1990. CrossRefGoogle Scholar
  5. 5.
    F. G. Fumi and M. P. Tosi. Ionic sizes + Born repulsive parameters in NaCl-type alkali halides. I. Huggins-Mayer + Pauling Forms. Journal of Physics and Chemistry of Solids, 25:31–44, 1964. CrossRefGoogle Scholar
  6. 6.
    L. X. Dang and T. M. Chang. Molecular mechanism of ion binding to the liquid/vapor interface of water. Journal of Physical Chemistry B, 106:235–238, 2002. CrossRefGoogle Scholar
  7. 7.
    B. Hess, C. Holm, and N. van der Vegt. Osmotic coefficients of atomistic NaCl (aq) force fields. Journal of Chemical Physics, 124:164509, 2006. CrossRefGoogle Scholar
  8. 8.
    J. Walter, S. Deublein, J. Vrabec, and H. Hasse. Development of models for large molecules and electrolytes in solution for process engineering. High Performance Computing in Science and Engineering ’09, pages 165–176, 2010. CrossRefGoogle Scholar
  9. 9.
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials. Journal of Physical Chemistry, 91:6269–6271, 1987. CrossRefGoogle Scholar
  10. 10.
    S. Deublein, B. Eckl, J. Stoll, S. V. Lishchuk, G. Guevara-Carrión, C. W. Glass, T. Merker, M. Bernreuther, H. Hasse, and J. Vrabec. ms2: A molecular simulation tool for thermodynamic properties. Computer Physics Communications, in press, doi: 10.1016/j.cpc.2011.04.026, 2011.
  11. 11.
    R. C. Weast, editor. Handbook of Chemistry and Physics. CRC Press, 68 edition, 1987. Google Scholar
  12. 12.
    P. B. Balbuena, K. P. Johnston, and P. J. Rossky. Molecular dynamics simulation of electrolyte solutions in ambient and supercritical water. 1. Ion solvation. Journal of Physical Chemistry, 100:2706–2715, 1996. CrossRefGoogle Scholar
  13. 13.
    K. P. Jensen and W. L. Jorgensen. Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. Journal of Chemical Theory and Computation, 2:1499–1509, 2006. CrossRefGoogle Scholar
  14. 14.
    T. P. Straatsma and H. J. C. Berendsen. Free-energy of ionic hydration – Analysis of a thermodynamic integration technique to evaluate free-energy differences by molecular-dynamics simulations. Journal of Chemical Physics, 89:5876–5886, 1988. CrossRefGoogle Scholar
  15. 15.
    P. J. Lenart, A. Jusufi, and A. Z. Panagiotopoulos. Effective potentials for 1 : 1 electrolyte solutions incorporating dielectric saturation and repulsive hydration. Journal of Chemical Physics, 126:044509, 2007. CrossRefGoogle Scholar
  16. 16.
    Y. Marcus. Ionic-radii in aqueous-solutions. Chemical Reviews, 88:1475–1498, 1988. CrossRefGoogle Scholar
  17. 17.
    J. H. Wang and S. Miller. Tracer diffusion in liquids. II. The self-diffusion as sodium ion in aqueous sodium chloride solutions. Journal of the American Chemical Society, 74:1611–1612, 1952. CrossRefGoogle Scholar
  18. 18.
    J. M. Nielsen, A. W. Adamson, and J. W. Cobble. The self-diffusion coefficient of the ions in aqueous sodium chloride and sodium sulfate at 25C. Journal of the American Chemical Society, 74:446–451, 1952. CrossRefGoogle Scholar
  19. 19.
    R. Zwanziger. Time correlation functions and transport coefficients in statistical mechanics. Annual Review of Physical Chemistry, 16:67–102, 1965. CrossRefGoogle Scholar
  20. 20.
    M. S. Green. Markoff random processes and statistical mechanics of time-dependent phenomena. Journal of Chemical Physics, 22:398, 1954. MathSciNetCrossRefGoogle Scholar
  21. 21.
    R. Kubo. Statistical-mechanical theory of irreversible processes: I. General theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12:570, 1957. MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Koneshan, J. C. Rasaiah, R. M. Lynden-Bell, and S. H. Lee. Solvent structure, dynamics and ion mobility in aqueous solutions at 25C. Journal of Physical Chemistry, 102:4193–4202, 1998. CrossRefGoogle Scholar
  23. 23.
    K. T. Gillen, D. C. Douglass, and M. J. R. Hoch. Self-diffusion in liquid water to −31C. Journal of Chemical Physics, 57:5117–5119, 1972. CrossRefGoogle Scholar
  24. 24.
    W. L. Jorgensen, J. Chandrasekhar, and J. D. Madura. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79:926–935, 1983. CrossRefGoogle Scholar
  25. 25.
    J. L. F. Abascal and C. Vega. A general purpose model for the condensed phases of water: TIP4P/2005. Journal of Chemical Physics, 123:234505, 2005. CrossRefGoogle Scholar
  26. 26.
    G. Guevara-Carrión, J. Vrabec, and H. Hasse. Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulations. Journal of Chemical Physics, 134:074508, 2011. CrossRefGoogle Scholar
  27. 27.
    H. A. Abd El-Rehim. Swelling of radiation crosslinked acrylamide-based microgels and their potential applications. Radiation Physics and Chemistry, 74:111–117, 2005. CrossRefGoogle Scholar
  28. 28.
    V. N. Pavlyuchenko, O. V. Sorochinskaya, S. S. Ivanchev, S. Y. Khaikin, V. A. Trounov, V. T. Lebedev, E. A. Sosnov, and I. V. Gofman. New silicone hydrogels based on interpenetrating polymer networks comprising polysiloxane and poly(vinyl alcohol) networks. Polymers for Advanced Technologies, 20:367–377, 2009. CrossRefGoogle Scholar
  29. 29.
    Z. M. O. Rzaev, S. Dinçer, and E. Pişkin. Functional copolymers of N-isopropylacrylamide for bioengineering applications. Progress in Polymer Science, 32:534–595, 2007. CrossRefGoogle Scholar
  30. 30.
    A. Hüther, X. Xu, and G. Maurer. Swelling of N-isopropyl acrylamide hydrogels in water and aqueous solutions of ethanol and acetone. Fluid Phase Equilibria, 219:231–244, 2004. CrossRefGoogle Scholar
  31. 31.
    A. Hüther, X. Xu, and G. Maurer. Swelling of N-isopropyl acrylamide hydrogels in aqueous solutions of sodium chloride. Fluid Phase Equilibria, 240:186–196, 2006. CrossRefGoogle Scholar
  32. 32.
    K. Mukae, M. Sakurai, S. Sawamura, K. Makino, S. W. Kim, I. Ueda, and K. Shirahama. Swelling of poly(N-isopropylacrylamide) gels in water-alcohol (C1-C4) mixed solvents. Journal of Physical Chemistry, 97:737–741, 1993. CrossRefGoogle Scholar
  33. 33.
    H.M. Crowther and B. Vincent. Swelling behavior of poly-n-isopropylacrylamide microgel particles in alcoholic solutions. Colloid Polymer Science, 276:46–51, 1998. CrossRefGoogle Scholar
  34. 34.
    S. Wu, H. Li, J. P. Chen, and K. Y. Lam. Modeling investigation of hydrogel volume transition. Macromolecular Theory and Simulations, 13:13–29, 2004. CrossRefGoogle Scholar
  35. 35.
    J. Walter, V. Ermatchkov, J. Vrabec, and H. Hasse. Molecular dynamics and experimental study of conformation change of poly(N-isopropylacrylamide)-hydrogels in water. Fluid Phase Equilibria, 296:164–172, 2010. CrossRefGoogle Scholar
  36. 36.
    Y. Zhang, S. Furyk, D. E. Bergbreiter, and P. S. Cremer. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. Journal of the American Chemical Society, 127:14505–14510, 2005. CrossRefGoogle Scholar
  37. 37.
    W. L. Jorgensen and J. Tirado-Rives. The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110:1657–1666, 1988. CrossRefGoogle Scholar
  38. 38.
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. Journal of The American Chemical Society, 118:11225–11236, 1996. CrossRefGoogle Scholar
  39. 39.
    C. Oostenbrink, T. A. Soares, N. F. A. van der Vegt, and W. F. van Gunsteren. Validation of the 53a6 GROMOS force field. European Biophysical Journal, 34:273–284, 2005. CrossRefGoogle Scholar
  40. 40.
    S. Weerasinghe and P. E. Smith. A Kirkwood-Buff derived force field for sodium chloride in water. Journal of Chemical Physics, 119:11342–11349, 2003. CrossRefGoogle Scholar
  41. 41.
    D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen. GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26:1701–1718, 2005. CrossRefGoogle Scholar
  42. 42.
    B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4:435–447, 2008. CrossRefGoogle Scholar
  43. 43.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81:3684–3690, 1984. CrossRefGoogle Scholar
  44. 44.
    G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126:014101, 2007. CrossRefGoogle Scholar
  45. 45.
    R. W. Hockney, S. P. Goel, and J. W. Eastwood. Quiet high-resolution computer models of a plasma. Journal of Computational Physics, 14:148–158, 1974. CrossRefGoogle Scholar
  46. 46.
    U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. A smooth particle mesh Ewald method. Journal of Chemical Physics, 103:8577–8592, 1995. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jonathan Walter
    • 1
  • Stephan Deublein
    • 1
  • Steffen Reiser
    • 1
  • Martin Horsch
    • 1
  • Jadran Vrabec
    • 2
  • Hans Hasse
    • 1
  1. 1.Lehrstuhl für ThermodynamikTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Lehrstuhl für Thermodynamik und EnergietechnikUniversität PaderbornPaderbornGermany

Personalised recommendations