Advertisement

Phase Diagram of the 1D t-J Model

  • A. Moreno
  • A. Muramatsu
  • S. Manmana
Conference paper

Abstract

The ground-state phase diagram of the t-J model in one dimension is studied by means of the Density Matrix Renormalization Group. The phase boundaries separating the repulsive from the attractive Luttinger-liquid (LL) phase, and also the boundaries of the spin-gap region and phase-separation, are determined on the basis of correlation functions and energy gaps. In particular, we shed light on a contradiction between variational and renormalization-group (RG) results about the extent of the spin-gap phase, that results larger than the variational but smaller than the RG one.

Keywords

Phase Diagram High Temperature Superconductor Thermodynamic Limit Hubbard Model Metallic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Moreno, A. Muramatsu, and S. R. Manmana, Phys. Rev. B 83, 205113 (2011). CrossRefGoogle Scholar
  2. 2.
    T. Fabritius, N. Laorencie, and S. Wessel, Phys. Rev. B 82, 035402 (2010). CrossRefGoogle Scholar
  3. 3.
    Z. Y. Meng et al., Nature 464, 847 (2010). CrossRefGoogle Scholar
  4. 4.
    L. Bonnes and S. Wessel, arXiv:1101.0913 (2011).
  5. 5.
    H. Feldner et al., arXiv:1101.1882 (2011).
  6. 6.
    L. Fritz et al., arXiv:1101.3784 (2011).
  7. 7.
    L. Bonnes and S. Wessel, arXiv:1101.5991 (2011).
  8. 8.
    F. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988). CrossRefGoogle Scholar
  9. 9.
    K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C 10, L271 (1977). CrossRefGoogle Scholar
  10. 10.
    M. Ogata, M. Lucchini, S. Sorella, and F. Assaad, Phys. Rev. Lett. 66, 2388 (1991). CrossRefGoogle Scholar
  11. 11.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994). CrossRefGoogle Scholar
  12. 12.
    S. R. White and D. Scalapino, Phys. Rev. B 57, 3031 (1998). CrossRefGoogle Scholar
  13. 13.
    H. J. Schulz, Phys. Rev. Lett 64, 2831 (1990). CrossRefGoogle Scholar
  14. 14.
    N. Kawakami and S.-K. Yang, Phys. Lett. A 148, 359 (1990). CrossRefGoogle Scholar
  15. 15.
    H. Frahm and V. E. Korepin, Phys. Rev. B 42, 10553 (1990). CrossRefGoogle Scholar
  16. 16.
    P.-A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990). CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    P.-A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130 (1991). CrossRefGoogle Scholar
  18. 18.
    T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2004). zbMATHGoogle Scholar
  19. 19.
    F. D. M. Haldane, J. Phys. C 14, 2585 (1981). CrossRefGoogle Scholar
  20. 20.
    F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1981). CrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Sólyom, Adv. Phys. 28, 201 (1979). CrossRefGoogle Scholar
  22. 22.
    V. J. Emery, In Highly Conducting One-dimensional Solids (Plenum, New York, 1979). Google Scholar
  23. 23.
    Y. C. Chen and T. K. Lee, Phys. Rev. B 47, 11548 (1993). CrossRefGoogle Scholar
  24. 24.
    C. S. Hellberg and E. J. Mele, Phys. Rev. B 48, 646 (1993). CrossRefGoogle Scholar
  25. 25.
    M. Nakamura, K. Nomura, and A. Kitazawa, Phys. Rev. Lett. 79, 3214 (1997). CrossRefGoogle Scholar
  26. 26.
    S. R. White, Phys. Rev. Lett. 69, 2863 (1992). CrossRefGoogle Scholar
  27. 27.
    S. R. White, Phys. Rev. B 48, 10345 (1993). CrossRefGoogle Scholar
  28. 28.
    U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005). CrossRefGoogle Scholar
  29. 29.
    R. T. Clay, A. W. Sandvik, and D. K. Campbell, Phys. Rev. B 59, 4665 (1999). CrossRefGoogle Scholar
  30. 30.
    S. Ejima, F. Gebhard, and S. Nishimoto, Europhys. Lett. 70, 492 (2005). CrossRefGoogle Scholar
  31. 31.
    N. Kawakami and S.-K. Yang, Phys. Lett. 65, 2309 (1990). CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Moreno
    • 1
  • A. Muramatsu
    • 1
  • S. Manmana
    • 2
  1. 1.Institut für Theoretische Physik IIIUniversität StuttgartStuttgartGermany
  2. 2.JILA, Department of PhysicsUniversity of ColoradoBoulderUSA

Personalised recommendations