Ab-initio Calculations of the Vibrational Properties of Nanostructures

  • Gabriel Bester
  • Peng Han
Conference paper


We study, via ab initio density functional theory (DFT), the vibrational properties of semiconductor colloidal nanostructures. The calculations are performed on the NEC Nehalem clusters at the High Performance Computing Center Stuttgart (HLRS). We find a relatively large blue shift of the longitudinal acoustic, transverse and longitudinal optical modes with decreasing nanocrystal size. This blue shift originates from a bond length reduction at the surface of the clusters. We also find a red shift of the vibrational modes in the case of unpassivated nanostructures. This red shift can be attributed to the presence of unpaired electrons in the sp3 hybrid orbitals and the ensuing reduction in bond length. A subsequent structural relaxation leads to the formation of more favorable sp2 bonds and the vibrational modes shift to the blue. We can also identify the coherent acoustic modes and find good agreement with experiment.


Density Functional Theory Message Passing Interface Vibrational Property Dynamical Matrix Interaction Potential Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rogach, A. L., Eychmüller, A., Hickey, S. G., Kershaw, S. V.: Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 3, 536–557 (2007). CrossRefGoogle Scholar
  2. 2.
    Gaponik, N., Hickey, S. G., Dorfs, D., Rogach, A. L., Eychmüller, A.: Progress in the light emission of colloidal semiconductor nanocrystals. Small 6, 1364–1378 (2010). CrossRefGoogle Scholar
  3. 3.
    Talapin, D. V., Lee, J.-S., Kovalenko, M. V., Shevchenko, E. V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010). CrossRefGoogle Scholar
  4. 4.
    Fischer, J., Loss, D.: Hybridization and spin decoherence in heavy-hole quantum dots. Phys. Rev. Lett. 105, 266603 (4pp) (2010). CrossRefGoogle Scholar
  5. 5.
    Kilina, S. V., Kilin, D. S., Prezhdo, O. V.: Breaking the phonon bottleneck in PbSe and CdSe quantum dots: Time-domain Density Functional Theory of charge carrier relaxation. ACS Nano 3, 93–99 (2009). CrossRefGoogle Scholar
  6. 6.
    An, J. M., Califano, M., Franceschetti, A., Zunger, A.: Excited-state relaxation in PbSe quantum dots. J. Chem. Phys. 128, 164720 (7pp) (2008). CrossRefGoogle Scholar
  7. 7.
    Trallero-Giner, C., Comas, F., Marques, G. E., Tallman, R. E., Weinstein, B. A.: Optical phonons in spherical core/shell semiconductor nanoparticles: Effect of hydrostatic pressure. Phys. Rev. B 82, 205426 (14pp) (2010). CrossRefGoogle Scholar
  8. 8.
    Fu, H. X., Ozolins, V., Zunger, A.: Phonons in GaP quantum dots. Phys. Rev. B 59, 2881–2887 (1999). CrossRefGoogle Scholar
  9. 9.
    Baroni, S., de Gironcoli, S., Corso, A. D.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001). CrossRefGoogle Scholar
  10. 10.
    The CPMD consortium page, coordinated by Parrinello, M., and Andreoni, W., Copyright IBM Corp 1990–2008, Copyright MPI für Festkörperforschung Stuttgart 1997–2001

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max Planck Institut für FestkörperforschungStuttgartGermany

Personalised recommendations