An Intelligent Tutoring System Architecture for Competency-Based Learning

  • Miguel Badaracco
  • Luis Martínez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6882)

Abstract

An Intelligent Tutoring System (ITS) aims to customize teaching processes dynamically according to student’s profile and activities by means of artificial intelligence techniques. The architecture of an ITS defines its components where the pedagogical model is crucial, because the ITS complexity will depend on its scope (specific or generic). Our interest is focused on generic ITS that are very complex due to the fact that could be applied to different educational domains. This contribution proposes an architecture for ITS that uses a Competency-based learning pedagogical model, in order to manage the complexity and make them easier to understand, together a diagnosis process for such a type of systems.

Keywords

Intelligent Tutoring Systems Competency-based education knowledge representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wenger, E.: Artificial intelligence and tutoring systems. Morgan Kaufmann Publishers, Inc, San Francisco (1987)Google Scholar
  2. 2.
    Badaracco, M., Martínez, L.: Design of Architecture for Intelligent Tutor System Based on Competencies (ITS-C). XVI Argentine Congress on Computer Science. Buenos Aires (2010)Google Scholar
  3. 3.
    Zalba, E.a.G., N.: An approach to education based on competencies, http://www.me.gov.ar/spu/guia_tematica/CPRES/cpres-comision.html
  4. 4.
    Catalano, A., Avolio de Cols, S., Sladogna, M.: Curriculum design based on standards of occupational competence. In: Oit, C. (ed.) Concepts and methodological guidelines. CINTERFOR, Buenos Aires (2004)Google Scholar
  5. 5.
  6. 6.
    Sleeman, D., Brown, J.S.: Intelligent tutoring systems. Academic Press, Inc., London (1982)Google Scholar
  7. 7.
    Polson, M.C., Richardson, J.J.: Foundations of Intelligent Tutoring Systems. Lawrence Erlbaum Associates Publishers, Hillsdale (1988)Google Scholar
  8. 8.
    Millán, E.: Sistema Bayesiano para Modelado del alumno. University of Malaga Spain, Málaga (2000)Google Scholar
  9. 9.
    Guzmán de los Riscos, E.: An evaluation model based on cognitive for STI diagnosis. University of Malaga Spain, Malaga (2005)Google Scholar
  10. 10.
    Anderson, J.R.: The Expert Module. In: Polson, M.C., Richardson, J.J. (eds.) Foundations of Intelligent Tutoring Systems. Lawrence Erlbaum Associates Publishers, Hillsdale (1988)Google Scholar
  11. 11.
    Mayo, M., Mitrovic, A.: Optimising its behaviour with bayesian networks and decision theory. International Journal of Artificial Intelligence in Education 12 (2001)Google Scholar
  12. 12.
    Holt, P., Dubs, S., Jones, M., Greer, J.: The state of student modelling. In: Greer, J.E., McCalla, G. (eds.) Student modelling: The Key to Individualized Knowledge- Based Instruction. Springer, Berlin (1994)Google Scholar
  13. 13.
    Verdejo, M.F.: Building a student model for an intelligent tutoring system. In: Greer, J.E., McCalla, G. (eds.) Student Modelling: The Key to Individualized Knowledge-Based Instruction. Springer, Berlin (1994)Google Scholar
  14. 14.
    Burns, H.L., Capps, C.G.: Foundations of intelligent tutoring systems: An introduction. In: Polson, M.C., Richardson, J.J. (eds.) Foundations of intelligent tutoring system. Lawrence Erlbaum Associates, Hillsdale (1988)Google Scholar
  15. 15.
    Burton, R.: The Environmental Module of Intelligent Tutoring Systems. In: Polson, M.C., Richardson, J.J. (eds.) Foundations of Intelligent Tutoring System. Lawrence Erlbaum Associates, Hillsdale (1988)Google Scholar
  16. 16.
    Xu, L., Sarrafzadeh, A.: Haskell-Tutor: An Intelligent Tutoring System for Haskell Programming. Research Letters in the Information and Mathematical Sciences 6 (2004)Google Scholar
  17. 17.
    López, N., Núñez, M., Rodríguez, I., Rubio, F.: WHAT: Web-Based Haskell Adaptive Tutor. In: Scott, D. (ed.) AIMSA 2002. LNCS (LNAI), vol. 2443, pp. 71–80. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Melis, E., Andres, E., BÄundenbender, J., Frischauf, A., Goguadze, G., Libbrecht, P., Pollet, M., Ullrich, C.: Activemath: A generic and adaptive web-based learning environment. International Journal of Artificial Intelligence in Education 12 (2001)Google Scholar
  19. 19.
    Weber, G., Brusilovsky, P.: Elm-art: An adaptive versatile system for web-based instruction. International Journal of Artificial Intelligence in Education 12 (2001)Google Scholar
  20. 20.
    Carro, R.M., Pulido, E., Rodríguez, P.: Tangow: A model for internet based learning. International Journal of Continuing Engineering Education and Life-Long Learning, IJCEELL 11 (2001)Google Scholar
  21. 21.
    Kavcic, A., Privosnik, M., Marolt, M., Divjak, S.: Educational hypermedia system alice: an evaluation of adaptive features. Advances in Multimedia, Video and Signal Processing Systems, wseas 2002 (2002) Google Scholar
  22. 22.
    Perrenoud, P.: Building Skills from School. Dolmen Ediciones, Santiago de Chile (2005)Google Scholar
  23. 23.
    Ramsay, J.O.: Kernel smoothing approaches to nonparametric item characteristic curve estimation. In: Psychometrika, vol. 56, Springer, New York (1991)Google Scholar
  24. 24.
    Owen, R.J.: A bayesian approach to tailored testing (Research Report No. 69). Educational Testing Service, Princeton, NJ (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Miguel Badaracco
    • 1
  • Luis Martínez
    • 2
  1. 1.Faculty of Economics and Business AdministrationNational University of FormosaFormosaRepublica Argentina
  2. 2.Department of Computer ScienceUniversity of Jaén SpainJaénSpain

Personalised recommendations