Skip to main content

Analysis of Reconfigurable 2DOF Machinery for Intelligent Manufacturing Systems

  • Conference paper
  • First Online:
Enabling Manufacturing Competitiveness and Economic Sustainability

Abstract

This paper analyzes the 2-DOF Global Kinematic Model (2-GKM). The 2-GKM model has a combination of both rotational and/or translational types of joints and all possible positive joint directions in 3D. Due to the model‘s complexity a simple example is selected: 2-Ttr (2 DOF Rotational and rotational/translational joints). The analysis includes the calculation of the Jacobian matrix, singularity conditions, Workspace, direct and inverse kinematics and dynamics. The results are used for the control of the reconfigurable path, which is defined as a set of teach points and each point is defined with the coordinates and configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ElMaraghy H. (2008): Changeable and Reconfigurable Manufacturing Systems in: Springer-Verlag (Publisher), ISBN: 978-1-84882-066-1.

    Google Scholar 

  2. A. Djuric, R. Al Saidi, W. ElMaraghy (2010): Dynamics Solution of n-DOF Global Machinery Model in: Robotics and Computer Integrated Manufacturing (CIM) Journal, submitted.

    Google Scholar 

  3. Ana M. Djuric, W. ElMaraghy (2011): Design of reconfigurable Robotics Machinery for the Intelligent Manufacturing Systems in: Book chapter, New Development of Manufacturing Robotic Systems and Automation, submitted.

    Google Scholar 

  4. B. Salem, M. Moll, W-M. Shen (2006): SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic Systems in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots an Systems, pp. 3636-3641.

    Google Scholar 

  5. Wei-Min Shen, Behnam Salem, Peter Will, (2000): Hormones for Self-Reconfigurable Robotics in: Intelligent Autonomous System 6, pp. 918-925.

    Google Scholar 

  6. S. Hirose, ”Biologically. (1993): Inspired Robots: Snake-Like Locomotors and Manipulators in: Oxford University Press, New York.

    Google Scholar 

  7. T. Fukuda and Y. Kawauchi. (1990): Cellular Robotic System (CEBOT) as one of the realization of Self-Organizing Intelligent Universal Manipulator in: Proceedings IEEE International Conference on Robotics and Automation, pp. 662-667.

    Google Scholar 

  8. G. S. Chirikjian. (1994): Kinematics of a Metamorphic System in: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 449-455.

    Google Scholar 

  9. L. Kelmar and P. K. KHhosla. (1990): Automatic Generation of Kinematics for a Reconfigurable Modular Manipulator System in: Journal of Robotic Systems, vol. 7, no. 4, pp. 599-619.

    Article  MATH  Google Scholar 

  10. M. Yim, D. G. Duff, and K. D. Roufas. (2000): POLYBOT: a Modular Reconfigurable Robot in: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 514-520.

    Google Scholar 

  11. F. Aagihili, K. Parsa,” A Reconfigurable Robot with Lockable Cylindrical Joints,” IEEE Transactions on Robotics, vol. 25, No. 4, August 2009.

    Google Scholar 

  12. T. Strasser, M.N. Rooker and G. Ebenhofer. (2008): Distributed Control Concept for a 6-DOF Reconfigurable Robot Arm in: Innovation production machines and systems: Fourth I*Proms Virtual International Conference.

    Google Scholar 

  13. Z. M. Bi, W.J. Ahang, I.-M. Chen, S.Y.T. Lang. (2007): Automated Generation of the D-H Parameters for Configuration Design of Modular Manipulators in: Robotics and Computer-Integrated Manufacturing pp. 553-562.

    Google Scholar 

  14. Z. Li, W. Melek, C.M.Clark. (2007): Development and Characterization of a Modular and Reconfigurable Robot in: CARV, Toronto, Canada

    Google Scholar 

  15. S. Tabandeh, C. Clark, W. Melek. (2007): Task-based Configuration Optimization of Modular and Reconfigurable Robots using a Multi-solution Inverse Kinematics Solver in: CARV, Toronto, Canada

    Google Scholar 

  16. Ana M. Djuric and W. H. ElMaraghy. (2007): A Unified Reconfigurable Robots Jacobian in: CARV, Toronto, Canada, pp. 811-823.

    Google Scholar 

  17. Djuric A. M. ElMaraghy WH. (2010): Automatic Separation Method for Generation of Reconfigurable 6R Dynamic Equations in: International Journal Manufacturing Technology.

    Google Scholar 

  18. Tarn T., Bejczy A. K., Yun X., and Li Z. (1991): Effect of Motor Dynamics on Nonlinear Feedback Robot Arm Control in: IEEE Transactions on Robotics and Automation, Vol. 7, No. 1, pp. 114-122.

    Article  Google Scholar 

  19. Ana M. Djuric and W. H. ElMaraghy. (2008): Filtering Boundary Points of the Robot Workspace in: 5th International Conference on Digital Enterprise Technology, Nantes, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Djuric .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Djuric, A., ElMaraghy, W.H. (2012). Analysis of Reconfigurable 2DOF Machinery for Intelligent Manufacturing Systems. In: ElMaraghy, H. (eds) Enabling Manufacturing Competitiveness and Economic Sustainability. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23860-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23860-4_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23859-8

  • Online ISBN: 978-3-642-23860-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics