Skip to main content

Impact of Machine-Driven Capacity Constellations on Performance and Dynamics of Job-Shop Systems

  • Conference paper
  • First Online:
Enabling Manufacturing Competitiveness and Economic Sustainability

Abstract

Machine-specific processing characteristics within job-shop systems result in differences regarding the machines’ capacities leading to heterogeneous overall capacity for the associated workshops. These capacity constellations influence the dynamics and the performance of the system. In this article, the impact of varying capacity constellations is studied by means of discrete-event simulation. For data analysis, simple logistics key figures as well as advanced concepts of nonlinear dynamics are applied. Following this approach, detailed insights are derived considering the impact of capacity constellations on the achievement of important performance measurements and on the system’s dynamics, e.g. regarding its dimensionality and predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gudehus, T., Kotzab, H. (2009): Comprehensive Logistics, Springer, Berlin.

    Book  Google Scholar 

  2. Slack, N., Chambers, S., Johnston, R. (2007): Operations Management, Pearson Educated Limited, Harlow.

    Google Scholar 

  3. ElMaraghy, H.A., Kuzgunkaya, O., Urbanic R.J. (2005): Manufacturing Systems Configuration Complexity, in: Annals of the CIRP, Vol. 54, No. 1, pp. 445-450.

    Article  Google Scholar 

  4. Bi, Z.M., Lang, S.Y.T., Shen, W., Wang, L. (2008): Reconfigurable Manufacturing Systems: The State of the Art, International Journal of Production Research, Vol. 46, No. 4, pp. 967-992.

    Article  MATH  Google Scholar 

  5. Wiendahl, H.-P., ElMaraghy, H., Nyhuis, P., Zäh, M.F., Wiendahl, H.-H., Duffie, N., Brieke, M. (2007): Changeable Manufacturing: Classification, Design, Operation. Keynote Paper, in: Annals of the CIRP, Vol. 56, No. 2, pp. 783–809.

    Article  Google Scholar 

  6. Ceryan, O, Koren, Y. (2009): Manufacturing Capacity Planning Strategies, in: Annals of the CIRP, Vol. 58, No. 1, pp. 403-406.

    Article  Google Scholar 

  7. Koren, Y., Jack Hu, S., Weber, T.W. (1998): Impact of Manufacturing System Configuration on Performance, in: Annals of the CIRP, Vol. 47, No. 1, pp. 369-372.

    Article  Google Scholar 

  8. Spicer, P., Koren, Y., Shpitalni, M., Yip-Hoi, D. (2002): Design Principles for Machining System Configurations, in: Annals of the CIRP, Vol. 51, No. 1, pp. 275-280.

    Article  Google Scholar 

  9. Youssef, A.M.A., ElMaraghy, H. (2006): Modelling and Optimization of Multiple-Aspect RMS configurations, International Journal of Production Research, Vol. 44, No. 22, pp. 4929-4958.

    Article  MATH  Google Scholar 

  10. Scholz-Reiter, B., Toonen, C., Tervo, J.T. (2009): Investigation of the Influence of Capacities and Layout on a Job-Shop- System's Dynamics, in: Proceedings of the 2nd International Conference on Dynamics in Logistics (LDIC 2009), pp. 389-398, Bremen, Germany.

    Google Scholar 

  11. Nyhuis, P., Wiendahl, H.-P. (2009): Fundamentals of Production Logistics – Theory, Tools and Applications, Springer, Berlin.

    Book  Google Scholar 

  12. Little, J.D.C. (1961): A Proof of the Queuing Formula: L = Lambda W, Operations Research, Vol. 9, No. 3, pp. 383-387.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hopp, J.W., Spearman, M.L. (2008): Factory Physics, McGraw Hill, New York.

    Google Scholar 

  14. Nyhuis, P., Wiendahl, H.-P. (2006): Logistic Production Operating Curves – Basic Model of the Theory of Logistic Operating Curves, in: Annals of the CIRP, Vol. 55, No. 1, pp. 441-444.

    Article  Google Scholar 

  15. Karmarkar, U., Kekre, S. (1987): Manufacturing Configuration, Capacity and Mix Decisions Considering Operational Costs, Journal of Manufacturing Systems, Vol. 6, No. 4, pp. 315-324.

    Article  Google Scholar 

  16. Donner, R., Hinrichs, U., Schicht, C., Scholz-Reiter, B. (2011): Complexity-Based Evaluation of Production Strategies Using Discrete-Event Simulation, in: Proceedings of the 2nd International Conference on Dynamics in Logistics (LDIC 2009), pp. 423-432, Bremen, Germany.

    Google Scholar 

  17. Philipp, T., de Beer, C., Windt, K., Scholz-Reiter, B. (2007): Evaluation of Autonomous Logistic Processes – Analysis of the Influence of Structural Complexity, in: Hülsmann, M., Windt, K. (eds): Understanding Autonomous Cooperation and Control in Logistics, pp. 303-324, Springer, Berlin.

    Google Scholar 

  18. Scholz-Reiter, B., Toonen, C., Lappe, D. (in press): Investigation of the Influence of Machine-Driven Capacity Constellations on the Performance of Job-Shop-Systems, in: Proceedings of the International Conference on Industrial Engineering and Systems Management (IESM 2011), Metz, France.

    Google Scholar 

  19. Takens, F. (1981): Detecting Strange Attractors in Turbulence, in: Rand, D.A., Young, L.-S. (eds): Dynamical Systems and Turbulence, pp. 366-381, Springer, New York.

    Chapter  Google Scholar 

  20. Golyandina, N., Nekrutkin, V., Zhigljavsky, A. (2001): Analysis of Time Series Structure – SSA and Related Techniques, Chapman & Hall/CRC, Boca Raton.

    Book  MATH  Google Scholar 

  21. Donner, R., Witt, A. (2006): Characterisation of Long-Term Climate Change by Dimension Estimates of Multivariate Palaeoclimatic Proxy Data, Nonlinear Processes in Geophysics, Vol. 13, No. 5, pp. 485-497.

    Article  Google Scholar 

  22. Donner, R., Sakamoto, T., Tanizuka, N. (2008): Complexity of Spatio-Temporal Correlations in Japanese Air Temperature Records. In: Donner, R.V., Barbosa, S.M. (eds): Nonlinear Time Series Analysis in the Geosciences – Applications in Climatology, Geodynamics, and Solar-Terrestrial Physics, pp. 125-154, Springer, Berlin.

    Google Scholar 

  23. Donner, R. (2007): Advanced Methods for Analysing and Modelling of Multivariate Palaeoclimatic Time Series, PhD thesis, University of Potsdam.

    Google Scholar 

  24. Xie, X., Zhao, X., Fang, Y., Cao, Z., He, G. (in press): Normalized Linear Variance Decay Dimension Density and its Application of Dynamical Complexity Detection in Physiological (fMRI) Time Series, Physics Letters A, Vol. 375, No. 17, pp. 1789-1795.

    Google Scholar 

  25. Donner, R., Scholz-Reiter, B., Hinrichs, U. (2008): Nonlinear Characterization of the Performance of Production and Logistics Networks, Journal of Manufacturing Systems, Vol. 27, No. 2, pp. 84-99.

    Article  Google Scholar 

  26. Donner, R., Hinrichs, U., Scholz-Reiter, B. (2008): Symbolic Recurrence Plots: A New Quantitative Framework for Performance Analysis of Manufacturing Networks, European Physical Journal Special Topics, Vol. 164, pp. 85-104.

    Article  Google Scholar 

  27. Thiel, M., Romano, M.C., Kurths, J. (2004): How much information is contained in a recurrence plot?, Physics Letters A, Vol. 330, No. 5, pp. 343-349.

    Article  MathSciNet  MATH  Google Scholar 

  28. Marwan, N., Romano, M.C., Thiel, M., Kurths, J. (2007): Recurrence Plots for the Analysis of Complex Systems, Physics Reports, Vol. 438, No. 5-6, pp. 237-329.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toonen, C., Lappe, D., Donner, R., Scholz-Reiter, B. (2012). Impact of Machine-Driven Capacity Constellations on Performance and Dynamics of Job-Shop Systems. In: ElMaraghy, H. (eds) Enabling Manufacturing Competitiveness and Economic Sustainability. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23860-4_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23860-4_100

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23859-8

  • Online ISBN: 978-3-642-23860-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics