Hybrid Learning System for Adaptive Complex Event Processing

  • Jean-René Coffi
  • Christophe Marsala
  • Nicolas Museux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6943)


In today’s security systems, the use of complex rule bases for information aggregation is more and more frequent. This does not however eliminate the possibility of wrong detections that could occur when the rule base is incomplete or inadequate. In this paper, a machine learning method is proposed to adapt complex rule bases to environmental changes and to enable them to correct design errors. In our study, complex rules have several levels of structural complexity, that leads us to propose an approach to adapt the rule base by means of an Association Rule mining algorithm coupled with Inductive logic programming for rule induction.


Association Rule Logic Program Rule Base Frequent Itemsets Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Esper-complex event processing (2008),
  2. 2.
    Simbad 3d robot simulator (2008),
  3. 3.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB 1994: Proceedings of the 20th International Conference on VLDB, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)Google Scholar
  4. 4.
    Allen, J.F.: An interval-based representation of temporal knowledge. In: IJCAI 1981: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 221–226. Morgan Kaufmann Publishers Inc., San Francisco (1981)Google Scholar
  5. 5.
    Ashwin, R.K., King, R.D., Srinivasan, A., Dehaspe, L.: Warmr: A data mining tool for chemical data (2001)Google Scholar
  6. 6.
    Biba, M., Maria, T., Basile, A., Ferilli, S., Esposito, F.: Improving scalability in ilp incremental systems (2006)Google Scholar
  7. 7.
    De Castro, L.N., Timmis, J.I.: Artificial immune systems as a novel soft computing paradigm. Soft Computing - A Fusion of Foundations, Methodologies and Applications 7, 526–544 (2003)Google Scholar
  8. 8.
    Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite events for active databases: Semantics, contexts and detection. In: VLDB 1994: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 606–617. Morgan Kaufmann Publishers Inc., San Francisco (1994)Google Scholar
  9. 9.
    Dousson, C., Gaborit, P., Ghallab, M.: Situation recognition: Representation and algorithms (1993)Google Scholar
  10. 10.
    Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy theory revision: Induction and abduction in inthelex. Machine Learning, 133–156 (2000)Google Scholar
  11. 11.
    Etzion, O., Niblett, P.: Event Processing in Action. Manning (2010)Google Scholar
  12. 12.
    Fenkam, P., Jazayeri, M., Reif, G.: On methodologies for constructing correct event-based applications. In: International Workshop on Distributed Event-Based Systems (DEBS), pp. 38–43 (2004)Google Scholar
  13. 13.
    Gatziu, S., Dittrich, K.R.: Samos: an active object–oriented database system. In: IEEE Bulletin of the TC on Data Engineering (1992)Google Scholar
  14. 14.
    Gehani, N.H., Jagadish, H.V., Shmueli, O.: Event specification in an active object-oriented database. SIGMOD Rec. 21(2), 81–90 (1992)CrossRefGoogle Scholar
  15. 15.
    Kavurucu, Y., Senkul, P., Toroslu, I.H.: Ilp-based concept discovery in multi-relational data mining. Expert Systems with Applications 26, 11418–11428 (2009)CrossRefGoogle Scholar
  16. 16.
    Lamma, E., Mello, P., Milano, M., Riguzzil, F.: Introducing abduction into (extensional) inductive logic programming systems. In: Lenzerini, M. (ed.) AI*IA 1997. LNCS, vol. 1321, pp. 183–194. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Landwehr, N., Kersting, K., Raedt, L.D.: Integrating nave bayes and foil. Journal of Machine Learning Research 8, 481–507 (2007)zbMATHGoogle Scholar
  18. 18.
    Lee, E., Chan, K.: Discovering Association Patterns in Large Spatio-temporal Databases. In: Sixth IEEE International Conference on Data Mining - Workshops (ICDMW 2006), pp. 349–354 (2006)Google Scholar
  19. 19.
    Luckham, D.: The Power of Events. Addison-Wesley, Reading (2002)Google Scholar
  20. 20.
    Museux, N., Vanbockryck, J.: Event based sensors fusion for public place surveillance. In: Proceedings of 10th International Conference on Information Fusion, pp. 1–8 (July 2007)Google Scholar
  21. 21.
    Plotkin, G.: A note on inductive generalisation. Machine Intelligence 5, 153–163 (1970)zbMATHGoogle Scholar
  22. 22.
    Quinlan, J.R., Cameron-jones, R.M.: Induction of logic programs: Foil and related systems. New Generation Computing 13, 287–312 (1995)CrossRefGoogle Scholar
  23. 23.
    Ray, O.: Nonmonotonic abductive inductive learning. Journal of Applied Logic (2008)Google Scholar
  24. 24.
    Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  25. 25.
    Tian, Y.L., Hampapur, A., Brown, L., Feris, R., Lu, M., Senior, A., Shu, C.F., Zhai, Y.: Event detection, query, and retrieval for video surveillance. In: Information Science Reference. ch. 15 (2009)Google Scholar
  26. 26.
    Zhai, Y., Tian, Y.L., Hampapur, A.: Composite spatio-temporal event detection in multi-camera surveillance networks. In: Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications (October 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jean-René Coffi
    • 1
    • 2
  • Christophe Marsala
    • 2
  • Nicolas Museux
    • 1
  1. 1.Thales Research and TechnologyPalaiseauFrance
  2. 2.LIP6/UPMCParisFrance

Personalised recommendations