Possibilistic Entropy: A New Method for Nonlinear Dynamical Analysis of Biosignals

  • Tuan D. Pham
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6881)


The theory of nonlinear dynamical systems has opened doors to discovering potential patterns hidden in complex time-series data. An attrative approach to nonlinear time-series analysis is the measure of predictability which characterizes the data in terms of entropy. A new entropy measure is presented in this paper as a new nonlinear dynamical method, which is based on the theory of possibility and the kriging computation. The proposed model has the potential for studying complex biosignals.


Major Adverse Cardiac Event Ordinary Krig Anion Exchange Resin Entropy Measure Nonlinear Dynamical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kaplan, D., Glass, L.: Understanding Nonlinear Dynamics. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  2. 2.
    Voss, A., et al.: Methods derived from nonlinear dynamics for analysing heart rate variability. Phil. Trans. R. Soc. A 367, 277–296 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Pincus, S.M., Goldberger, A.L.: Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. 4, H1643–H1656 (1994)Google Scholar
  5. 5.
    Pincus, S.M.: Approximate entropy (ApEn) as a complexity measure. Chaos 5, 110–117 (1995)CrossRefGoogle Scholar
  6. 6.
    Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)CrossRefGoogle Scholar
  7. 7.
    Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Modern. Phys. 57, 617–654 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kannathal, N., et al.: Entropies for detection of epilepsy in EEG. Comput. Meth. Programs Biomed. 80, 187–194 (2005)CrossRefGoogle Scholar
  9. 9.
    Srinivasan, V., Eswaran, C., Sriraam, N.: Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Information Technology in Biomedicine 11, 288–295 (2007)CrossRefGoogle Scholar
  10. 10.
    Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Amer. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)Google Scholar
  11. 11.
    Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett 89, 068102-1–068102-4 (2002)CrossRefGoogle Scholar
  12. 12.
    Chen, W., Zhuang, J., Yu, W., Wang, Z.: Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics 31, 61–68 (2009)CrossRefGoogle Scholar
  13. 13.
    Lewis, M.J., Short, A.L.: Sample entropy of electrocardiographic RR and QT time-series data during rest and exercise. Physiological Measurement 28, 731–744 (2007)CrossRefGoogle Scholar
  14. 14.
    Lee, M.-Y., Yang, C.-S.: Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images. Comput. Meth. Programs Biomed. 100, 269–282 (2010)CrossRefGoogle Scholar
  15. 15.
    Pham, T.D.: GeoEntropy: a measure of complexity and similarity. Pattern Recognition 43, 887–896 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 100, 9–34 (1999)CrossRefGoogle Scholar
  17. 17.
    Isaaks, E.H., Srivastava, R.M.: An Introduction to Applied Geostatistics. Oxford University Press, New York (1989)Google Scholar
  18. 18.
    Journel, A.G., Rao, S.E.: Deriving conditional distribution from ordinary kriging, Stanford Center for Reservoir Forcasting. Stanford University Report (29), 25 (1996)Google Scholar
  19. 19.
    Brennan, M.-L., Penn, M.S., Van Lente, F., Nambi, V., Shishehbor, M.H., Aviles, R.J., Goormastic, M., Pepoy, M.L., McErlean, E.S., Topol, E.J., Nissen, S.E., Hazen, S.L.: Prognostic value of myeloperoxidase in patients with chest pain. New Eng. J. Med. 13, 1595–1604 (2003)CrossRefGoogle Scholar
  20. 20.
    Pham, T.D., Wang, H., Zhou, X., Beck, D., Brandl, M., Hoehn, G., Azok, J., Brennan, M.L., Hazen, S.L., Li, K., Wong, S.T.C.: Computational prediction models for early detection of risk of cardiovascular events using mass spectrometry data. IEEE Trans Information Technology in Biomedicine 12, 636–643 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tuan D. Pham
    • 1
  1. 1.School of Engineeering and Information TechnologyThe University of New South WalesCanberraAustralia

Personalised recommendations