On the Comparison of Parallel Island-Based Models for the Multiobjectivised Antenna Positioning Problem

  • Eduardo Segredo
  • Carlos Segura
  • Coromoto León
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6881)


Antenna Positioning Problem (app) is an NP-Complete Optimisation Problem which arises in the telecommunication field. Its aim is to identify the infrastructures required to establish a wireless network. A well-known mono-objective version of the problem has been used. The best-known approach to tackle such a version is a problem-dependent strategy. However, other methods which minimise the usage of problem-dependent information have also been defined. Specifically, multiobjectivisation has provided solutions of similar quality than problem-dependent strategies. However, it requires a larger amount of time to converge to high-quality solutions. The main aim of the present work has been the decrease of the time invested in solving app with multiobjectivisation. For this purpose, a parallel island-based model has been applied to two app instances. In order to check the robustness of the approach, several migration stages have been tested. In addition, a scalability analysis using the best-behaved migration stage has been performed. Computational results have demonstrated the validity of the proposal.


Parallel Model Speedup Factor Success Ratio High Quality Solution Migration Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akella, M.R., Batta, R., Delmelle, E.M., Rogerson, P.A., Blatt, A., Wilson, G.: Base Station Location and Channel Allocation in a Cellular Network with Emergency Coverage Requirements. European Journal of Operational Research 164(2), 301–323 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alba, E.: Evolutionary Algorithms for Optimal Placement of Antennae in Radio Network Design. In: International Parallel and Distributed Processing Symposium, vol. 7, p. 168 (2004)Google Scholar
  3. 3.
    Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, Hoboken (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do Additional Objectives Make a Problem Harder? In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 765–772. ACM, New York (2007)Google Scholar
  5. 5.
    Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. In: Genetic and Evolutionary Computation (2007)Google Scholar
  6. 6.
    Handl, J., Lovell, S.C., Knowles, J.: Multiobjectivization by Decomposition of Scalar Cost Functions. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 31–40. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Knowles, J.D., Watson, R.A., Corne, D.: Reducing Local Optima in Single-Objective Problems by Multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Mendes, S.P., Molina, G., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sáez, Y., Miranda, G., Segura, C., Alba, E., Isasi, P., León, C., Sánchez-Pérez, J.M.: Benchmarking a Wide Spectrum of Meta-Heuristic Techniques for the Radio Network Design Problem. IEEE Trans. Evol. Comput., 1133–1150 (2009)Google Scholar
  9. 9.
    Mendes, S.P., Pulido, J.A.G., Rodriguez, M.A.V., Simon, M.D.J., Perez, J.M.S.: A Differential Evolution Based Algorithm to Optimize the Radio Network Design Problem. In: E-SCIENCE 2006: Proceedings of the Second IEEE International Conference on e-Science and Grid Computing, p. 119. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  10. 10.
    Meunier, H., Talbi, E.G., Reininger, P.: A Multiobjective Genetic Algorithm for Radio Network Optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 317–324. IEEE Press, Los Alamitos (2000)Google Scholar
  11. 11.
    Segura, C., González, Y., Miranda, G., León, C.: A Multi-Objective Evolutionary Approach for the Antenna Positioning Problem. In: Setchi, R., Jordanov, I., Howlett, R., Jain, L. (eds.) KES 2010. LNCS, vol. 6276, pp. 51–60. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Segura, C., Segredo, E., González, Y., León, C.: Multiobjectivisation of the Antenna Positioning Problem. In: Abraham, A., Corchado, J., González, S., De Paz Santana, J. (eds.) International Symposium on Distributed Computing and Artificial Intelligence. AISC, vol. 91, pp. 319–327. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Talbi, E.G., Meunier, H.: Hierarchical Parallel Approach for GSM Mobile Network Design. J. Parallel Distrib. Comput. 66(2), 274–290 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Wan Tcha, D., Myung, Y.S., Hyuk Kwon, J.: Base Station Location in a Cellular CDMA System. Telecommunication Systems 14(1-4), 163–173 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Veldhuizen, D.A.V., Zydallis, J.B., Lamont, G.B.: Considerations in Engineering Parallel Multiobjective Evolutionary Algorithms. IEEE Trans. Evol. Comput. 7(2), 144–173 (2003)CrossRefGoogle Scholar
  16. 16.
    Weicker, N., Szabo, G., Weicker, K., Widmayer, P.: Evolutionary Multiobjective Optimization for Base Station Transmitter Placement with Frequency Assignment. IEEE Trans. Evol. Comput. 7(2), 189–203 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Eduardo Segredo
    • 1
  • Carlos Segura
    • 1
  • Coromoto León
    • 1
  1. 1.Dpto. Estadística, I.O.y ComputaciónUniversidad de La LagunaLa LagunaSpain

Personalised recommendations