Skip to main content

A Muscular Activation Controlled Rehabilitation Robot System

  • Conference paper
Book cover Knowledge-Based and Intelligent Information and Engineering Systems (KES 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6881))

Abstract

The number of people who need rehabilitation increases day by day because of reasons such as laceration, aging, work accidents and etc. Therefore, the need of rehabilitation aids is constantly increasing. There are many research studies about assistive technologies in rehabilitation. Especially, rehabilitation robots have a great importance. Existing rehabilitation robot studies have mostly focused on position and force control. Thus, it is muscular activation that should be evaluated to enhance control results, because the same joint trajectory and/or joint torque can be achieved through different muscular combinations. In this study a muscular activation controlled rehabilitation robot system for lower limbs is proposed. A probabilistic artificial neural network model, which can estimate posteriori probability, was used for discrimination of EMG patterns for robot control with EMG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salter, R.B., Simmonds, D.F., Malcolm, B.W., Rumble, E.J., MacMichael, D., Clements, N.D.: The biological effect of continuous passive motion on the healing of full thickness defects in articular cartilage: an experimental investiga-tion in the rabbit. The Journal of Bone and Joint Surgery 62(8), 1232–1251 (1980)

    Article  Google Scholar 

  2. Biodex System 2 User’s Manual, Biodex System Medical

    Google Scholar 

  3. http://www.csmisolutions.com (access time: March 2011)

  4. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Robot-aided neuro-rehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998)

    Article  Google Scholar 

  5. Loueiro, R., Amirabdollahian, F., Topping, M., Driessen, B., Harwin, W.: Upper Limb Mediated Stroke Therapy – GENTLE/s Approach. Autonomus Robots 15, 35–51 (2003)

    Article  Google Scholar 

  6. MULOS Project, http://www.asel.udel.edu/robotics/newsletter/showcase12.html (access time: February 11, 2005)

  7. Reinkensmeyer, D.J., Kahn, L.E., Averbuch, M., McKenna-Cole, A.N., Schmit, B.D., Rymer, W.Z.: Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM Guide. Journal of Rehabilitation Research and Development 37(6), 653–662 (2003)

    Google Scholar 

  8. Lum, P.S., Burgar, C.G., Kenney, D., Van der Loos, H.F.M.: Quanti-fication of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEETrans. Biomed. Eng. 46(6), 652–662 (1999)

    Article  Google Scholar 

  9. Ferraro, M., Palazzolo, J.J., Krol, J., Krebs, H.I., Hogan, N., Volpe, B.T.: Robot aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 61(11), 1604–1607 (2003)

    Article  Google Scholar 

  10. Lum, P.S., Burgar, C.G., Kenney, D., Van der Loos, H.F.M.: Robot assisted movement training compared with conventional therapy techniques for the rehabilitation of upper limb motor function following stroke. Arch. Phys. Med. Rehab. 83(7), 952–959 (2002)

    Article  Google Scholar 

  11. Sakaki, T., Okada, S., Okajima, Y., Tanaka, N., Kimura, A., Uchida, S.: TEM: Therapeutic exercise machine for hip and knee joints of spastic patients. In: Proceeding of Sixth International Conference on Rehabilitation Robotics, pp. 183–186 (1999)

    Google Scholar 

  12. REHAROB Project (2000), http://reharob.manuf.bme.hu

  13. Akdogan, E., Taçgin, E., Adli, M.A.: Knee rehabilitation using an intelli-gent robotic system. Journal of Intelligent Manufacturing 20(2), 195–202 (2009)

    Article  Google Scholar 

  14. Zecca, M., Micera, S., Carrozza, M.C., Dario, P.: Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit. Rev. Biomed. Eng. 30, 459–485 (2002)

    Article  Google Scholar 

  15. Wheeler, K.R., Jorgensen, C.C.: Gestures as input: Neuroelectric joy-sticks and keyboards. Pervasive Comput. 2(2), 56–61 (2003)

    Article  Google Scholar 

  16. Fukuda, O., Tsuji, T., Kaneko, M., Otsuka, A.: A human-assisting ma-nipulator teleoperated by EMG signals and arm motions. IEEE Trans. Robot. Autom. 19(2), 210–222 (2003)

    Article  Google Scholar 

  17. Moon, I., Lee, M., Chu, J., Mun, M.: Wearable EMG-based HCI for electric-powered wheelchair users with motor disabilities. In: Proc. IEEE Int. Conf. Robot, pp. 2649–2654 (2005)

    Google Scholar 

  18. Arachchilage, R., Gopura, R.C., Kiguchi, K.: EMG-Based Control of an Exoskeleton Robot for Human Forearm and Wrist Motion Assist. In: IEEE International Conference on Robotics and Automation Pasadena, USA (2008)

    Google Scholar 

  19. Hel, H., Kiguchi, K.: A Study on EMG-Based Control of Exoskeleton Robots for Human Lower-limb Motion Assist. In: 6th International Special Topic Conference on ITAB, Tokyo, pp. 292–295 (2007)

    Google Scholar 

  20. Hoshino, T., Tomono, M., Suzuki, T., Makoto, S., Mabuchi, K.: A Gait Support System for Human Locomotion without Restriction of the Lower Ex-tremities: Preliminary Mechanism and Control Design. In: Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, August 30-September 3, pp. 2950–2953 (2006)

    Google Scholar 

  21. Tsuji, T., Fukuda, O., Ichinobe, H., Kaneko, M.: A Log-Linearized Gaus-sian Mixture Network and Its Application to EEG Pattern Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C 29(1), 60–72 (1999)

    Article  Google Scholar 

  22. Akdogan, E., Adli, M.A.: The Design and Control of a Therapeutic Exercise Robot for Lower Limb Rehabilitation: Physiotherabot. Mechatronics 21(3), 509–522 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akdoğan, E., Şişman, Z. (2011). A Muscular Activation Controlled Rehabilitation Robot System. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2011. Lecture Notes in Computer Science(), vol 6881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23851-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23851-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23850-5

  • Online ISBN: 978-3-642-23851-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics