Advertisement

Modeling and Solving

  • Jianyang Zhou
Chapter

Abstract

This chapter presents the methodology of modeling and solving using NCL.

Keywords

Schedule Problem Constraint Satisfaction Problem Delivery Problem Progressive Party Distinct Integer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and placement problems. Mathl. Comput. Modelling, 17(7), 57–73 (1993)CrossRefGoogle Scholar
  2. Andrews, W.S.: Magic Squares and Cubes. New York: Dover (1960)zbMATHGoogle Scholar
  3. Applegate, D., Cook, W.: A computational study of the job shop scheduling problem. Operations Research Society of America, 3(2): 149–156 (1991)zbMATHGoogle Scholar
  4. Apt, K.R., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge University Press (2007)Google Scholar
  5. Bleuzen-Guernalec, N., Colmerauer, A.: Optimal narrowing of a block of sortings in optimal time. Constraints 5(1/2): 85–118 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-Wesley (2007)Google Scholar
  7. Bouwkamp, C.J., Duijvestijn, A.J.W.: Catalogue of simple perfect squared squares of orders 21 through 25. Eindhoven University of Technology, Technical Report 92 WSK 03, the Netherlands (1992)Google Scholar
  8. Carlier, J., Pinson, E.: An algorithm for solving the job shop problem. Management Science, 35(2): 164–176 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  9. Colmerauer, A.: PROLOG II reference manual and theoretical model. Technical report, Groupe Intelligence Articielle, Université Aix-Marseille II (1982)Google Scholar
  10. Colmerauer, A.: An introduction to Prolog III. Communications of the ACM, 33(7): 69–90 (1990)CrossRefGoogle Scholar
  11. Colmerauer, A.: Prolog IV Specifications. Reference Manual WP7/R25, Esprit project 5246, TRD Prince (1995)Google Scholar
  12. Conrad, A., Hindricks, T., Morsy, H., Wegener, I.: Solution of the knight’s Hamiltonian path problem on chessboards. Discrete Applied Mathematics, 50: 125–134 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.: The constraint logic language CHIP. Proc. of the 3rd Annual ACM Symposium on Theory of Computing, 151–158 (1988)Google Scholar
  14. Domenjoud, E., Kirchner, C., Zhou, J.: Generating feasible schedules for a pick-up and delivery problem. Electronic Notes in Discrete Mathematics 1: 36–47 (1999)MathSciNetCrossRefGoogle Scholar
  15. Dudeney, H.: In Strand Magazine. Vol. 68, pp. 97 and 214 (1924)Google Scholar
  16. Faure, R.: Le déchargement et le chargement d’un navire. Exercises et problème résolus de recherche opérationnelle, Masson, T3: 279–282 (1991)Google Scholar
  17. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. New York: Springer (1990)zbMATHCrossRefGoogle Scholar
  18. Gambini, I.: A method for cutting squares into distinct squares. Discrete Applied Mathematics, 98(1–2): 65–80 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)Google Scholar
  20. Hall, P.: On representatives of subsets. J. London Math. Soc., 10(37): 26–30 (1935)Google Scholar
  21. Harvey, W., Winterer, T.: Solving the MOLR and social golfers problems. CP’05: 286–300 (2005)Google Scholar
  22. Hoffman, K.L., Padberg, M.: Solving airline crew scheduling problems by branch-and-cut. Management Science, 39(6): 657–682 (1993)zbMATHCrossRefGoogle Scholar
  23. Jaffar, J., Lassez, J.L.: Constraint Logic Programming. Proc. of the 14th ACM POPL Conference, Munich, 111–119 (1987)Google Scholar
  24. Lenstra, J.K., Rinnooy Kan, A.H.G.: Computational complexity of discrete optimization problems. Annals of Discrete Mathematics, 4: 121–140 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  25. Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time windows. Proc. of IEEE International Conference on Tools with Artificial Intelligence, 13: 160–167 (2001)Google Scholar
  26. Muth, J.F., Thompson, G.L.: Industrial Scheduling. Englewood Cliffs, NJ: Prentice-Hall (1963)Google Scholar
  27. Puget, J.-F.: Programmation logique sous contraintes en C++. LMO 1994: 193–202 (1994)Google Scholar
  28. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. Proc. of AAAI, 1: 362–367 (1994)Google Scholar
  29. Régin, J.C.: Generalized arc consistency for global cardinality constraint. AAAI/IAAI, 1: 209–215 (1996)Google Scholar
  30. Smith, B., Brailsford, S., Hubbard, P.M., Williams, H.B.: The progressive party problem: Integer linear programming and constraint programming compared. Constraints, 1–2: 119–138 (1996)MathSciNetCrossRefGoogle Scholar
  31. Smith, D.: So you thought Sudoku came from the Land of the Rising Sun ….The Observer, Sunday, 15 May, 2005 (2005)Google Scholar
  32. Smolka, G.: The Oz programming model. Computer Science Today, 324–343 (1995)Google Scholar
  33. Solomon, M.M.: The vehicle routing and scheduling problems with time window constraints. Operations Research, 35: 254–265 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  34. Stewart, I.: Calculs d’enfer. Vision Mathématique, 86–88 (1994)Google Scholar
  35. Zhou, J.: A permutation-based approach for solving the Job-shop problem. Constraints, 2(2): 185–213 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  36. Zhou, J.: Routing by mixed set programming. Proc. of the 8th International Symposium on Operations Research and Its Applications, 157–166 (2009)Google Scholar

Copyright information

© Science Press 2012

Authors and Affiliations

  • Jianyang Zhou

There are no affiliations available

Personalised recommendations