Gaze-Dependent Depth-of-Field Effect Rendering in Virtual Environments

  • Radosław Mantiuk
  • Bartosz Bazyluk
  • Anna Tomaszewska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6944)


This paper presents gaze-dependent depth-of-field (DOF) rendering setup, consisting of high frequency eye tracker connected to a graphics workstation. A scene is rendered and visualised with the DOF simulation controlled by data captured with the eye tracker. To render a scene in real-time, the reverse-mapped z-buffer DOF simulation technique with the blurring method based on Poisson disk is used. We conduct perceptual experiments to test human impressions caused by simulation of the DOF phenomenon and to assess benefits of using eye tracker to control the DOF effect rendering in virtual environments. Additionally, we survey the eye tracking technologies suitable for virtual environments and preview techniques of the real time DOF rendering.


Virtual Environment Game Engine Perceptual Experiment Virtual Reality Software Poisson Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marks, S., Windsor, J., Wünsche, B.: Evaluation of game engines for simulated surgical training. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, GRAPHITE 2007, pp. 273–280 (2007)Google Scholar
  2. 2.
    Anderson, E.F., McLoughlin, L., Liarokapis, F., Peters, C., Petridis, P., Freitas, S.: Serious Games in Cultural Heritage VAST 2009: 10th International Symposium on Virtual Reality, Archaeology and Cultural Heritage - VAST-STAR, Short and Project Proceedings, pp. 29-48 (2009)Google Scholar
  3. 3.
    Myers, S.: Streamlining Simulation Development using a Commercial Game Engine Camber Corporation, Technical Report RTO-MP-MSG-069Google Scholar
  4. 4.
    Ritterfeld, U., Cody, M., Vorderer, P.: Serious Games: Mechanisms and Effects, 1st edn. Routledge, New York (2009)Google Scholar
  5. 5.
    Goldstein, E.B.: Sensation and Perception, 5th edn. Brooks/Cole Publishing Company (1998)Google Scholar
  6. 6.
    Mather, G.: The use of image blur as a depth cue. Perception 26, 1147–1158 (1997)CrossRefGoogle Scholar
  7. 7.
    Hillaire, S., Lecuyer, A., Cozot, R., Casiez, G.: Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments. In: Proc. of IEEE Virtual Reality, pp. 47–50 (2008)Google Scholar
  8. 8.
    Duchowski, A.T.: Eye Tracking Methodology: Theory and Practice, 2nd edn. Springer, London (2007)zbMATHGoogle Scholar
  9. 9.
    RED250 Technical Specification. SensoMotoric Instruments GmbH (2009)Google Scholar
  10. 10.
    Tobii T/X series Eye Trackers. Product Description. Tobii Technology AB, 2nd edn. (2009)Google Scholar
  11. 11.
    Morimoto, C.H., Mimica, M.: Eye gaze tracking techniques for interactive applications. Computer Vision and Image Understanding 98(1), 4–24 (2005)CrossRefGoogle Scholar
  12. 12.
    Demers, J.: Depth of Field: A Survey of Techniques GPU GEMS. Addison-Wesley, Reading (2004)Google Scholar
  13. 13.
    Riguer, G., Tatarchuk, N., Isidoro, J.: Real-time depth of field simulation. haderX2: Shader Programming Tips and Tricks with DirectX 9.0, 529–579 (2002)Google Scholar
  14. 14.
    Potmesil, M., Chakravarty, I.: Modeling motion blur in computer-generated images. ACM SIGGRAPH Comput. Graph. 17(3), 389–399 (1983)CrossRefGoogle Scholar
  15. 15.
    Hillaire, S., Lecuyer, A., Cozot, R., Casiez, G.: Depth-of-field blur effects for first-person navigation in virtual environments. In: Proc. of the ACM Symposium on Virtual Reality Software and Technology, pp. 203–206 (2007)Google Scholar
  16. 16.
    Hammon, E.: Practical post-process depth of field. GPU Gems 3, Hubert Nguyen, NVIDIA Corporation (2008)Google Scholar
  17. 17.
    Poole, A., Ball, L.J.: Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and Future Prospects. Encyclopedia of Human-Computer Interaction, C. Ghaoui, Idea Group, Inc., Pennsylvania (2005)Google Scholar
  18. 18.
    Sasse, D.: A Framework for Psychophysiological Data Acquisition in Digital Games Master’s thesis (2008)Google Scholar
  19. 19.
    Lee, S., Eisemann, E., Seidel, H.P.: Real-Time Lens Blur Effects and Focus Control. ACM Transactions on Graphics, SIGGRAPH 2010 (2010)Google Scholar
  20. 20.
    Lee, S., Eisemann, E., Seidel, H.P.: Depth-of-Field Rendering with Multiview Synthesis. ACM Trans. Graph (SIGGRAPH ASIA 2009) 28(5), 1–6 (2009)Google Scholar
  21. 21.
    Lee, S., Kim, G.J., Choi, S.: Real-Time Depth-of-Field Rendering Using Splatting on Per-Pixel Layers. Computer Graphics Forum 27(7), 1955–1962 (2008)CrossRefGoogle Scholar
  22. 22.
    Aknine-Moller, T., Haines, E., Hoffman, N.: Real Time Rendering, 3rd edn. A K Peters, Stanford (2008)CrossRefGoogle Scholar
  23. 23.
    ITU-R.REC.BT.500-11: Methodology for the subjective assessment of the quality for television pictures (2002)Google Scholar
  24. 24.
    Slater, M., Spanlang, B., Corominas, D.: Simulating virtual environments within virtual environments as the basis for a psychophysics of presence. ACM Trans. Graph. 29(4), 92:1–02:9. (2010)CrossRefGoogle Scholar
  25. 25.
    Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1535), 3549–3557 (2009)CrossRefGoogle Scholar
  26. 26.
    Hillaire, S., Lécuyer, A., Regia-Corte, T., Cozot, R., Royan, J., Breton, G.: A real-time visual attention model for predicting gaze point during first-person exploration of virtual environments. In: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology (VRST 2010), Hong Kong, pp. 191–198 (2010)Google Scholar
  27. 27.
    Kenny, A., Delaney, H., Mcloone, S., Ward, T.: A preliminary investigation into eye gaze data in a first person shooter game. In: Proceedings of European Conference on Modelling and Simulation. Addison-Wesley, Reading (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Radosław Mantiuk
    • 1
  • Bartosz Bazyluk
    • 1
  • Anna Tomaszewska
    • 1
  1. 1.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations