Efficiency for Adaptive Triangular Meshes: Key Issues of Future Approaches

  • Jörn Behrens
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST, volume 1)


In recent years, adaptive mesh refinement applications entered the field of ESM. These methods reveal their strength, wherever there are large (spatial) scale differences interacting locally. If a localized small scale feature needs to be resolved in order to simulate its influence on the large scale accurately, then adaptive mesh refinement comes to play.


Wave Height Voronoi Diagram Delaunay Triangulation Triangular Mesh Unstructured Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bader M, Schraufstetter S, Vigh CA, Behrens J (2008) Memory efficient adaptive mesh generation and implementation of multigrid algorithms using sierpinski curves. Int J Comput Sci Eng 4(1):12–21Google Scholar
  2. Bader M, C B, Schwaiger J, Vigh CA (2010) Dynamically adaptive simulations with minimal memory requirement–solving the shallow water equations using Sierpinski curves. SIAM J Sci Comput 32(1):212–228Google Scholar
  3. Bänsch E (1991) Local mesh refinement in 2 and 3 dimensions. Impact Comput Sci Eng 3:181–191Google Scholar
  4. Behrens J (2005) Multilevel optimization by space-filling curves in adaptive atmospheric modeling. In: Hülsemann F, Kowarschik M, Rüde U (eds) Frontiers in simulation—18th symposium on simulation techniques. SCS Publishing House, Erlangen, pp 186–196Google Scholar
  5. Behrens J (2006) Adaptive atmospheric modeling—key techniques in grid generation, data structures, and numerical operations with applications, LNCSE, vol 54. Springer, BerlinGoogle Scholar
  6. Behrens J, Zimmermann J (2000) Parallelizing an unstructured grid generator with a space-filling curve approach. In: Bode A, Ludwig T, Karl W, Wismüller R (eds) Euro-Par 2000 parallel processing–6th international Euro-Par conference, Munich, Germany, August/Sptember 2000 proceedings, Springer Verlag, Berlin, Lecture Notes in Computer Science, vol 1900, pp 815–823Google Scholar
  7. Behrens J, Dethloff K, Hiller W, Rinke A (2000) Evolution of small-scale filaments in an adaptive advection model for idealized tracer transport. Mon Weather Rev 128:2976–2982CrossRefGoogle Scholar
  8. Behrens J, Rakowsky N, Hiller W, Handorf D, Läuter M, Päpke J, Dethloff K (2005) Amatos: parallel adaptive mesh generator for atmospheric and oceanic simulation. Ocean Modell 10(1–2):171–183CrossRefGoogle Scholar
  9. Carstensen C (2004) All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable. Math Computat 73(247):1153–1165CrossRefGoogle Scholar
  10. Causon DM, Ingram DM, Mingham CG, Yang G, Pearson RV (2000) Calculation of shallow water flows using a Cartesian cut cell approach. Adv Water Res 23(5):545–562CrossRefGoogle Scholar
  11. Danilov S, Kivman G, Schröter J (2004) A finite element ocean model: principles and evaluation. Ocean Modell 6:125–150CrossRefGoogle Scholar
  12. de Berg M, van Kreveld M, Overmars M, Schwarzkopf O (2000) Computational geometry: Algorithms and applications. 2nd edn. Springer, BerlinGoogle Scholar
  13. Dörfler W (1996) A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal 33(3):1106–1134CrossRefGoogle Scholar
  14. Hanert E, Legat V, Deleersnijder E (2002) A comparison of three finite elements to solve the linear shallow water equations. Ocean Modell 5:17–35CrossRefGoogle Scholar
  15. Harig S, Chaeroni C, Pranowo WS, Behrens J (2008) Tsunami simulations on several scales: Comparison of approaches with unstructured meshes and nested grids. Ocean Dyn 58:429–440Google Scholar
  16. Läuter M, Handorf D, Rakowsky N, Behrens J, Frickenhaus S, Best M, Dethloff K, Hiller W (2007) A parallel adaptive barotropic model of the atmosphere. J Comput Phys 223(2):609–628Google Scholar
  17. Piggott MD, Pain CC, Gorman GJ, Power PW, Goddard AHJ (2005) h, r, and hr adaptivity with applications in numerical ocean modelling. Ocean Modell 10:95–113CrossRefGoogle Scholar
  18. Power PW, Piggott MD, Fang F, Gorman GJ, Pain CC, Marshall DP, Goddard AJH, Navon IM (2006) Adjoint goal-based error norms for adaptive mesh ocean modelling. Ocean Modell 15:3–38CrossRefGoogle Scholar
  19. Tanemura M, Ogawa T, Ogita N (1983) A new algorithm for three-dimensional Voronoi tesselation. J Comput Phys 51(2):191–207CrossRefGoogle Scholar
  20. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Meth Eng 24:337–357CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.KlimaCampusUniversität HamburgHamburgGermany

Personalised recommendations