Skip to main content

Numerical Algorithms for ESM: State of the Art

  • Chapter
  • First Online:
Book cover Earth System Modelling - Volume 2

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST,volume 1))

  • 769 Accesses

Abstract

Numerical simulation of geophysical flows has been historically one of the earliest instances in which the power of electronic computers was employed successfully to the quantitative prediction of natural phenomena. Initially, the main focus was indeed on numerical weather forecasting, for which the ideas of Richardson had already provided an appropriate conceptual framework, that was subsequently strengthened by the analyses and the numerical simulations of Charney and von Neumann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Stegun I (1965) Handbook of mathematical functions. Dover Publications, New York

    Google Scholar 

  • Arakawa A (1966) Computational design for longterm numerical integration of the equations of fluid motion: two-dimensional incompressible flow. J Comput Phys 1:119–143

    Article  Google Scholar 

  • Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Clim 17:2493–2525

    Article  Google Scholar 

  • Arakawa A, Lamb V (1981) A potential enstrophy and energy conserving scheme for the shallow water equations. Mon Weather Rev 109:18–136

    Article  Google Scholar 

  • Asselin R (1972) Frequency filter for time integrations. Mon Weather Rev 100:487–490

    Article  Google Scholar 

  • Beljaars A, Bechtold P, Köhler M, Morcrette J, Tompkins A, Viterbo P, Wedi N (2004) The numerics of physical parameterization. In: Proceedings of the Seminar on recent developments in numerical methods for atmosphere and ocean models, ECMWF, pp 113–134

    Google Scholar 

  • Bourke W (1972) An efficient one level primitive-equation spectral model. Mon Weather Rev 100:683–689

    Article  Google Scholar 

  • Bourke W (1974) A multi-level spectral model. I: formulation and hemispheric integrations. Mon Weather Rev 10:687–701

    Article  Google Scholar 

  • Bryan K, Manabe S, Pacanowski RC (1975) A global ocean-atmosphere climate model II: the oceanic circulation. J Phys Oceanogr 5:30–29

    Article  Google Scholar 

  • Caya A, Laprise R, Zwack P (1998) Consequences of using the splitting method for implementing physical forcings in a semi-implicit, semi-Lagrangian model. Mon Weather Rev 126:1707–1713

    Article  Google Scholar 

  • Collins W, Rasch P, Boville B, Hack J, McCaa J, Williamson D, Briegleb B, Bitz C, Lin S, Zhang Z (2006) The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J Clim 19:2144–2161

    Article  Google Scholar 

  • Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Commun Pure Appl Math 5:243–255

    Article  Google Scholar 

  • Davies T, Cullen M, Malcolm A, Mawson M, Staniforth A, White A, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart J Royal Meteorol Soc 131:1759–1782

    Article  Google Scholar 

  • Dubal M, Wood N, Staniforth A (2005) Mixed parallel-sequential-split schemes for time-stepping multiple physical parameterizations. Mon Weather Rev 133:989–1002

    Article  Google Scholar 

  • Dubal M, Wood N, Staniforth A (2006) Some numerical properties of approaches to physics-dynamics coupling for NWP. Quart J Royal Meteorol Soc 132:27–42

    Article  Google Scholar 

  • Dukowicz J (1995) Mesh effects for Rossby waves. J Comput Phys 119:188–194

    Article  Google Scholar 

  • Durran D (1991) The third order Adams–Bashforth method: an attractive alternative to leapfrog time differencing. Mon Weather Rev 119:702–720

    Article  Google Scholar 

  • Fletcher C (1997) Computational techniques for fluid dynamics. Springer, Berlin

    Google Scholar 

  • Garrat J (1993) Sensitivity of climate simulations to land surface and atmospheric boundary layer treatments: a review. J Clim 6:419–449

    Article  Google Scholar 

  • Gent P, McWilliams J (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 29:2719–2729

    Google Scholar 

  • Girard C, Delage Y (1990) Stable schemes for nonlinear vertical diffusion in atmospheric circulation models. Mon Weather Rev 118:737–745

    Article  Google Scholar 

  • Griffies SE (2004) Fundamentals of Ocean Climate Models. Princeton University Press, Princeton

    Google Scholar 

  • Griffies SM, Böning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier AM, Webb D (2000) Developments in ocean climate modelling. Ocean Dyn 2:123–192

    Google Scholar 

  • Haidvogel DB, Beckmann A (1999) Numerical ocean circulation modeling. Imperial College Press, London

    Book  Google Scholar 

  • Haidvogel D, Shchepetkin A, Arango H (2004) The regional ocean modeling system: new time-stepping algorithms to reduce mode-splitting error and to ensure constancy preservation. In: Proceedings of the seminar on recent developments in numerical methods for atmosphere and ocean models, ECMWF, pp 151–162

    Google Scholar 

  • Haltiner G, Williams R (1980) Numerical weather prediction and dynamic meteorology. Wiley, New York

    Google Scholar 

  • Hirsch C (1990) Numerical Computation of Internal and External Flows: Computational Methods for Inviscid and Viscous Flows, vol. 2. 1st edn. Wiley, Chichester

    Google Scholar 

  • Hortal M, Simmons A (1991) Use of reduced Gaussian grids in spectral models. Mon Weather Rev 119:1057–1074

    Article  Google Scholar 

  • Hoskins BJ, Simmons AJ (1975) A multi-layer spectral model and the semi-implicit method. Quart J Royal Meteorol Soc 101:637–655

    Article  Google Scholar 

  • Janjic Z (1984) Nonlinear advection schemes and energy cascade on semi-staggered grids. Mon Weather Rev 111:1234–1245

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M (1988) Time schemes for strongly nonlinear damping equations. Mon Weather Rev 116:1945–1958

    Article  Google Scholar 

  • Kantha LH, Clayson CA (2000) Numerical models of oceans and oceanic processes, vol 66. International Geophysics Series, Academic Press, San Diego

    Google Scholar 

  • Kasahara A (1974) Various vertical coordinate systems used for numerical weather prediction. Mon Weather Rev 102:509–522

    Article  Google Scholar 

  • Kasahara A, Washington WW (1967) NCAR global general circulation model of the atmosphere. Mon Weather Rev 95:389–402

    Article  Google Scholar 

  • Klemp J, Wilhelmson R (1978) The simulation of three-dimensional convective storm dynamics. J Atmos Sci 35:1070–1096

    Article  Google Scholar 

  • Large W, McWilliams J, Doney S (1994) Oceanic vertical mixing: a review and a model with nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Leonard B, Lock A, MacVean M (1996) Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Mon Weather Rev 124:2588–2606

    Article  Google Scholar 

  • LeVeque R (2007) Finite difference methods for ordinary and partial differential equations, Steady state and time dependent problems, SIAM, Philadelphia

    Google Scholar 

  • Lin S (2004) Vertically Lagrangian finite-volume dynamical core for global models. Mon Weather Rev 132:2293–2307

    Article  Google Scholar 

  • Lin S, Rood R (1996) Multidimensional flux-form semi-Lagrangian transport schemes. Mon Weather Rev 124:2046–2070

    Article  Google Scholar 

  • Lin S, Rood RB (1997) An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart J Royal Meteorol Soc 123:2477–2498

    Article  Google Scholar 

  • Manabe S, Bryan K (1969) Climate calculations with a combined ocean-atmosphere model. J Atmos Sci 26:786–789

    Google Scholar 

  • Manabe S, Bryan K, Spelman M (1975) A global ocean-atmosphere climate model Part I: the atmospheric circulation. J Phys Oceanogr 5:3–29

    Google Scholar 

  • Marshall S (2005) Recent advances in understanding ice sheet dynamics. Earth Planet Sci Lett 240:191–204

    Article  Google Scholar 

  • Mesinger F (1981) Horizontal advection schemes on a staggered grid: an enstrophy and energy conserving model. Mon Weather Rev 109:467–478

    Article  Google Scholar 

  • Mesinger F, Arakawa A (1976) Numerical methods used in atmospheric models, vol 1, WMO, GARP Publication series n.17

    Google Scholar 

  • Morcrette J (1991) Radiation and cloud radiative properties in the ECMWF forecasting system. J Geophys Res Atmos 96:9121–9132

    Article  Google Scholar 

  • Orszag SA (1970) Transform method for calculation of vector coupled sums:application to the spectral form of the vorticity equation. J Atmos Sci 27:890–895

    Article  Google Scholar 

  • Phillips T, Potter G, Williamson D, Cederwall R, JSBoyle, Fiorino M, Hnilo J, Olson J, Xie S, Yio J (2004) Evaluating parameterizations in general circulation models—Climate simulation meets weather prediction. Bull Am Meteorol Soc 85:1903–1947

    Google Scholar 

  • Randall D (1994) Geostrophic adjustment and the finite-difference shallow water equations. Mon Weather Rev 122:1371–1377

    Article  Google Scholar 

  • Robert A (1981) A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean 19:35–46

    Article  Google Scholar 

  • Robert A (1982) A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J Meteorol Soc Japan 60:319–325

    Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: model description. MPI Technical Report 349, MPIM

    Google Scholar 

  • Sadourny R (1975) The dynamics of finite difference models of the shallow water equations. J Atmos Sci 32:680–689

    Google Scholar 

  • Sadourny R, Arakawa A, Mintz Y (1968) Integration of the nondivergent barotropic vorticity equation with a icosahedral-hexagonal grid for the sphere. Mon Weather Rev 96:351–356

    Article  Google Scholar 

  • Simmons AJ, Burridge DM (1981) An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon Weather Rev 109:758–766

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: part I, the basic experiment. Mon Weather Rev 91:99–162

    Article  Google Scholar 

  • Staniforth A, Coté J (1991) Semi-Lagrangian integration schemes for atmospheric models—a review. Mon Weather Rev 119:2206–2223

    Article  Google Scholar 

  • Staniforth A, Wood N (2008) Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. J Comput Phys 227:3445–3464

    Article  Google Scholar 

  • Strikwerda J (1989) Finite difference schemes and PDEs. Wadsworth-Brooks/Cole, Pacific Grove

    Google Scholar 

  • Teixeira J (1999) Stable schemes for partial differential equations: the one-dimensional diffusion equation. J Comput Phys 153:403–417

    Article  Google Scholar 

  • Warner J, Sherwood C, Arango H, Signell R (2005) Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell 8:81–113

    Article  Google Scholar 

  • Wild M (2008) Short-wave and long-wave surface radiation budgets in GCMs: a review based on the IPCC-AR4/CMIP3 models. Tellus Series A 60:932–9453

    Article  Google Scholar 

  • Williamson D (1968) Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus 20:642–653

    Article  Google Scholar 

  • Williamson D (1979) Numerical methods used in atmospheric models, vol. II,WMO, GARP Publication series n.17

    Google Scholar 

  • Williamson D (2002) Time-split versus process-split coupling of parameterizations and dynamical core. Mon Weather Rev 130:2024–2041

    Article  Google Scholar 

  • Williamson D (2007) The evolution of dynamical cores for global atmospheric models. J Meteorol Soc Jpn 85:241–269

    Article  Google Scholar 

  • Williamson D, Rasch P (1989) Two dimensional semi-Lagrangian transport with shape preserving interpolation. Mon Weather Rev 117:102–129

    Article  Google Scholar 

  • Williamson D, Rosinski J (2000) Accuracy of reduced grid calculations. Quart J Royal Meteorol Soc 126:1619–1640

    Article  Google Scholar 

  • Wood N, Diamantakis M, Staniforth A (2007) A monotonically-damping second-order-accurate unconditionally-stable numerical scheme for diffusion. Quart J Royal Meteorol Soc 133:1559–1573

    Article  Google Scholar 

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the canadian climate centre general circulation model. Atmos Ocean 33:407–446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bonaventura .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Bonaventura, L., Beckmann, A. (2012). Numerical Algorithms for ESM: State of the Art. In: Earth System Modelling - Volume 2. SpringerBriefs in Earth System Sciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23831-4_2

Download citation

Publish with us

Policies and ethics