Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective

  • Murtuza Jadliwala
  • Igor Bilogrevic
  • Jean-Pierre Hubaux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6879)

Abstract

One major concern in pervasive wireless applications is location privacy, where malicious eavesdroppers, based on static device identifiers, can continuously track users. As a commonly adopted countermeasure to prevent such identifier-based tracking, devices regularly and simultaneously change their identifiers in special areas called mix-zones. Although mix-zones provide spatio-temporal de-correlations between old and new identifiers, pseudonym changes, depending on the position of the mix-zone, can incur a substantial cost on the network due to lost communications and additional resources such as energy. In this paper, we address this trade-off by studying the problem of determining an optimal set of mix-zones such that the degree of mixing in the network is maximized, whereas the overall network-wide mixing cost is minimized. We follow a graph-theoretic approach and model the optimal mixing problem as a novel generalization of the vertex cover problem, called the Mix Cover (MC) problem. We propose three bounded-ratio approximation algorithms for the MC problem and validate them by an empirical evaluation of their performance on real data. The combinatorics-based approach followed here enables us to study the feasibility of determining optimal mix-zones regularly and under dynamic network conditions.

Keywords

Road Network Vertex Cover Linear Program Relaxation Location Privacy Vehicular Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Ahtiainen, A., Kalliojarvi, K., Kasslin, M., Leppanen, K., Richter, A., Ruuska, P., Wijting, C.: Awareness networking in wireless environments: Means of exchanging information. In: IEEE Vehicular Technology Magazine (September 2009)Google Scholar
  5. 5.
    Alpcan, T., Buchegger, S.: Security games for vehicular networks. IEEE Transactions on Mobile Computing (2011)Google Scholar
  6. 6.
    Aspvall, B., Stone, R.: Khachiyan’s linear programming algorithm. Journal of Algorithms 1(1), 1–13 (1980)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted vertex cover algorithm. Journal of Algorithms (1981)Google Scholar
  8. 8.
    Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Computing 2(1), 46–55 (2003)CrossRefGoogle Scholar
  9. 9.
    Beresford, A.R., Stajano, F.: Mix zones: User privacy in location-aware services. In: PerCom Workshop (2004)Google Scholar
  10. 10.
    Buchegger, S., Schiöberg, D., Vu, L.-H., Datta, A.: Peerson: P2P social networking: early experiences and insights. In: EuroSys SNS Workshop, pp. 46–52 (2009)Google Scholar
  11. 11.
    Buttyán, L., Holczer, T., Vajda, I.: On the effectiveness of changing pseudonyms to provide location privacy in vANETs. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 129–141. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Buttyán, L., Holczer, T., Weimerskirch, A., Whyte, W.: Slow: A practical pseudonym changing scheme for location privacy in vanets. In: IEEE VNC (2009)Google Scholar
  13. 13.
    Chaum, D.: Untraceable electronic mail, return addresses and digital pseudonyms. Comm. ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  14. 14.
    Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. J. Cryptology 1(1), 66–75 (1988)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dantzig, G.B.: Linear Programming and Extensions. Princeton Press, Princeton (1963)CrossRefMATHGoogle Scholar
  16. 16.
    Dinur, I., Safra, S.: On the hardness of approximating minimum vertex-cover. Annals of Mathematics (2005)Google Scholar
  17. 17.
  18. 18.
    Freudiger, J., Raya, M., Felegyhazi, M., Papadimitratos, P., Hubaux, J.-P.: Mix zones for location privacy in vehicular networks. In: Win-ITS (2007)Google Scholar
  19. 19.
    Freudiger, J., Shokri, R., Hubaux, J.-P.: On the optimal placement of mix zones. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 216–234. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Freudiger, J., Shokri, R., Hubaux, J.-P.: Evaluating the privacy risk of location-based services. In: Financial Cryptography (2011)Google Scholar
  21. 21.
    Gaonkar, S., Li, J., Choudhury, R.R., Cox, L.P., Schmidt, A.: Micro-blog: sharing and querying content through mobile phones and social participation. In: MobiSys, pp. 174–186 (2008)Google Scholar
  22. 22.
    Garay, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)Google Scholar
  23. 23.
    Giordano, E., Tomatis, A., Ghosh, A., Pau, G., Gerla, M.: C-VeT: An Open Research Platform for Vanets: Evaluation of Peer to Peer Applications in Vehicular Networks. In: IEEE VTC (2008)Google Scholar
  24. 24.
    Goldreich, O.: Computational Complexity: A Conceptual Perspective (2008)Google Scholar
  25. 25.
    Golle, P., Partridge, K.: On the anonymity of home/Work location pairs. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 390–397. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Gonzalez, T.F.: A simple LP-free approximation algorithm for the minimum weight vertex cover problem. Information Processing Letters 54(3), 129–131 (1995)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Hassin, R., Levin, A.: The minimum generalized vertex cover problem. ACM Trans. Algorithms 2 (January 2006)Google Scholar
  28. 28.
    Hochbaum, D., Levin, A.: The Multi-integer Set Cover and the Facility Terminal Cover Problem. Networks 53, 63–66 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Huang, L., Matsuura, K., Yamane, H., Sezaki, K.: Enhancing wireless location privacy using silent period. In: IEEE WCNC (2005)Google Scholar
  30. 30.
    Huang, L., Yamane, H., Matsuura, K., Sezaki, K.: Towards modeling wireless location privacy. In: PETS (2006)Google Scholar
  31. 31.
    Humbert, M., Manshaei, M.H., Freudiger, J., Hubaux, J.-P.: Tracking games in mobile networks. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 38–57. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Karp, R.M.: Complexity of Computer Computations. Plenum Press, New York (1972)Google Scholar
  33. 33.
    Khiabani, M.: Metro-sexual (2009), http://bit.ly/theranMetroSexual
  34. 34.
    Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Shisha, O. (ed.) Inequalities, vol. III, pp. 159–175. Academic Press, London (1972)Google Scholar
  35. 35.
    Li, M., Sampigethaya, K., Huang, L., Poovendran, R.: Swing & swap: user-centric approaches towards maximizing location privacy. In: WPES (2006)Google Scholar
  36. 36.
    Megiddo, N.: On the complexity of linear programming. In: Advances in Economic Theory, Fifth World Congress, pp. 225–268. Cambridge University Press, Cambridge (1987)CrossRefGoogle Scholar
  37. 37.
    Merlin, C.J., Heinzelman, W.B.: A study of safety applications in vehicular networks. In: MASS 2005 (2005)Google Scholar
  38. 38.
    Palanisamy, B., Liu, L.: Mobimix: Protecting location privacy with mix zones over road networks. In: ICDE 2011 (2011)Google Scholar
  39. 39.
    Paulos, E., Goodman, E.: The familiar stranger: anxiety, comfort, and play in public places. In: CHI, pp. 223–230 (2004)Google Scholar
  40. 40.
    Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudeonymity - a proposal for terminology. In: International Workshop on Designing Privacy Enhancing Technologies: Design Issues in Anonymity and Unobservability (2001)Google Scholar
  41. 41.
  42. 42.
    Sampigethaya, K., Huang, L., Li, M., Poovendran, R., Matsuura, K., Sezaki, K.: CARAVAN: Providing location privacy for VANET. In: ESCAR (2005)Google Scholar
  43. 43.
    Schoch, E., Kargl, F., Leinmüller, T., Schlott, S., Papadimitratos, P.: Impact of pseudonym changes on geographic routing in vANETs. In: Buttyán, L., Gligor, V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 43–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  44. 44.
    Shokri, R., Freudiger, J., Jadliwala, M., Hubaux, J.-P.: A distortion-based metric for location privacy. In: ACM WPES (2009)Google Scholar
  45. 45.
    Shokri, R., Theodorakopoulos, G., Le Boudec, J.-Y., Hubaux, J.-P.: Quantifying location privacy. In: IEEE S&P (2011)Google Scholar
  46. 46.
  47. 47.
    Xu, G., Yang, Y., Xu, J.: Linear Time Algorithms for Approximating the Facility Terminal Cover Problem. Networks 50, 118–126 (2007)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Xu, Q., Mak, T., Ko, J., Sengupta, R.: Vehicle-to-vehicle safety messaging in dsrc. In: VANET (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Murtuza Jadliwala
    • 1
  • Igor Bilogrevic
    • 1
  • Jean-Pierre Hubaux
    • 1
  1. 1.LCA1, EPFLLausanneSwitzerland

Personalised recommendations