Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

European Symposium on Research in Computer Security

ESORICS 2011: Computer Security – ESORICS 2011 pp 335–354Cite as

  1. Home
  2. Computer Security – ESORICS 2011
  3. Conference paper
Adapting Helios for Provable Ballot Privacy

Adapting Helios for Provable Ballot Privacy

  • David Bernhard18,
  • Véronique Cortier19,
  • Olivier Pereira20,
  • Ben Smyth19 &
  • …
  • Bogdan Warinschi18 
  • Conference paper
  • 2915 Accesses

  • 40 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 6879)

Abstract

Recent results show that the current implementation of Helios, a practical e-voting protocol, does not ensure independence of the cast votes, and demonstrate the impact of this lack of independence on vote privacy. Some simple fixes seem to be available and security of the revised scheme has been studied with respect to symbolic models.

In this paper we study the security of Helios using computational models. Our first contribution is a model for the property known as ballot privacy that generalizes and extends several existing ones.

Using this model, we investigate an abstract voting scheme (of which the revised Helios is an instantiation) built from an arbitrary encryption scheme with certain functional properties. We prove, generically, that whenever this encryption scheme falls in the class of voting-friendly schemes that we define, the resulting voting scheme provably satisfies ballot privacy.

We explain how our general result yields cryptographic security guarantees for the revised version of Helios (albeit from non-standard assumptions).

Furthermore, we show (by giving two distinct constructions) that it is possible to construct voting-friendly encryption, and therefore voting schemes, using only standard cryptographic tools.We detail an instantiation based on ElGamal encryption and Fiat-Shamir non-interactive zero-knowledge proofs that closely resembles Helios and which provably satisfies ballot privacy.

Keywords

  • Encryption Scheme
  • Proof System
  • Random Oracle
  • Vote Scheme
  • Random Oracle Model

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download conference paper PDF

References

  1. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Cohen, (Benaloh), J., Fischer, M.: A Robust and Verifiable Cryptographically Secure Election Scheme. In: Proceedings of the 26th Symposium on Foundations of Computer Science, pp. 372–382 (1985)

    Google Scholar 

  3. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    CrossRef  Google Scholar 

  4. Benaloh, J., Yung, M.: Distributing the Power of a Government to Enhance the Privacy of Voters. In: Proceedings of the 5th Symposium on Principles of Distributed Computing, pp. 52–62 (1986)

    Google Scholar 

  5. Benaloh, J.: Verifiable Secret-Ballot Elections. Yale University Department of Computer Science Technical Report number 561 (1987)

    Google Scholar 

  6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: 20th STOC, pp. 103–112 (1988)

    Google Scholar 

  7. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing (STOC 1990), pp. 42–437 (1990)

    Google Scholar 

  8. Schnorr, C.: Efficient signature generation for smart cards. Journal of cryptology 4, 161–174 (1991)

    CrossRef  MATH  Google Scholar 

  9. Damgård, I.B.: Non-interactive circuit based proofs and non-interactive perfect zero-knowledge with preprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 341–355. Springer, Heidelberg (1993)

    CrossRef  Google Scholar 

  10. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security (CCS 1993), pp. 62–73 (1993)

    Google Scholar 

  11. Benaloh, J., Tuinstra, D.: Receipt-Free Secret-Ballot Elections. In: Proceedings of the 26th ACM Symposium on Theory of Computing, pp. 544–553 (1994)

    Google Scholar 

  12. Gennaro, R.: Achieving independence efficiently and securely. In: Proceedings of the 14th Principles of Distributed Computing Symposium (PODC 1995), pp. 130–136 (1995)

    Google Scholar 

  13. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  14. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  15. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  16. Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ciphertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  17. Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  18. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: Proceedings of th 40th Annual Symposium on Foundations of Computer Science (FOCS 1999), pp. 543–553 (1999)

    Google Scholar 

  19. Schnorr, C.-P., Jakobsson, M.: Security of Signed ElGamal Encryption. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  20. Bellare, M., Boldyreva, A., Staddon, J.: Multi-recipient encryption schemes: Security notions and randomness re-use. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567. Springer, Heidelberg (2002), http://cseweb.ucsd.edu/~mihir/papers/bbs.html

    Google Scholar 

  21. Groth, J.: Evaluating Security of Voting Schemes in the Universal Composability Framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 46–60. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  22. Fischlin, M.: Communication-Efficient Non-interactive Proofs of Knowledge with Online Extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  23. Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections. In: Proceedings of the 4th Workshop on Privacy in the Electronic Society (WPES 2005), pp. 61–70 (2005)

    Google Scholar 

  24. Kremer, S., Ryan, M.D.: Analysis of an Electronic Voting Protocol in the Applied Pi Calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  25. Moran, T., Naor, M.: Receipt-Free Universally-Verifiable Voting with Everlasting Privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  26. Delaune, S., Kremer, S., Ryan, M.D.: Coercion-Resistance and Receipt-Freeness in Electronic Voting. In: 19th Computer Security Foundations Workshop (CSFW 2006), pp. 28–42 (2006)

    Google Scholar 

  27. Chevallier-Mames, B., Fouque, P., Pointcheval, D., Stern, J., Traoré, J.: On Some Incompatible Properties of Voting Schemes. In: Proceedings of the Workshop on Trustworthy Elections, WOTE 2006 (2006)

    Google Scholar 

  28. Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl Accord (2007), http://www.dagstuhlaccord.org/

  29. Benaloh, J.: Ballot Casting Assurance via Voter-Initiated Poll Station Auditing. In: Proceedings of the Second Usenix/ACCURATE Electronic Voting Technology Workshop (2007)

    Google Scholar 

  30. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  31. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting System. In: Proceedings of the 29th Security and Privacy Symposium (S&P 2008), pp. 354–368 (2008)

    Google Scholar 

  32. Adida, B.: Helios: Web-based open-audit voting. In: 17th USENIX Security Symposium, pp. 335–348 (2008), http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf

  33. Backes, M., Hriţcu, C., Maffei, M.: Automated Verification of Remote Electronic Voting Protocols in the Applied Pi-calculus. In: Proceedings of the 21st IEEE Computer Security Foundations Symposium (CSF 2008), pp. 195–209 (2008)

    Google Scholar 

  34. Wikström, D.: Simplified Submission of Inputs to Protocols. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 293–308. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  35. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university president using open-audit voting: Analysis of real-world use of Helios. In: Proceedings of the 2009 Conference on Electronic Voting Technology/Workshop on Trustworthy Elections (2009)

    Google Scholar 

  36. International association for cryptologic research Election page at http://www.iacr.org/elections/2010

  37. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy Website with description and video at http://www.bensmyth.com/publications/10-attacking-helios/ (Cryptology ePrint Archive, Report 2010/625)

  38. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting protocols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 389–404. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  39. Unruh, D., Müller-Quade, J.: Universally Composable Incoercibility. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 411–428. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  40. Küsters, R., Truderung, T., Vogt, A.: A Game-Based Definition of Coercion-Resistance and its Applications. In: Proceedings of the 23rd IEEE Computer Security Foundations Symposium (CSF 2010), pp. 122–136 (2010)

    Google Scholar 

  41. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure Fully Homomorphic Encryption, http://eprint.iacr.org/2010/560

  42. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy. To appear in: Proceedings of the 24th Computer Security Foundations Symposium, CSF 2011 (2011)

    Google Scholar 

  43. Küsters, R., Truderung, T., Vogt, A.: Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study. To appear at the 32nd Security and Privacy Symposium, S&P 2011 (2011) (preprint)

    Google Scholar 

  44. Persiano, G.: About the Existence of Trapdoors in Cryptosystems. Work in Progress, http://libeccio.dia.unisa.it/Papers/Trapdoor/

  45. Helios voting. Website, http://heliosvoting.org

  46. Helios Headquarters, Princeton University Undergraduate Student Government, http://usg.princeton.edu/officers/elections-center/helios-headquarters.html

Download references

Author information

Authors and Affiliations

  1. University of Bristol, England

    David Bernhard & Bogdan Warinschi

  2. LORIA - CNRS, France

    Véronique Cortier & Ben Smyth

  3. Université Catholique de Louvain, Belgium

    Olivier Pereira

Authors
  1. David Bernhard
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Véronique Cortier
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Olivier Pereira
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Ben Smyth
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Bogdan Warinschi
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. MSIS Department and CIMIC, Rutgers University, Washington Park 1, 07102, Newark, NJ, USA

    Vijay Atluri

  2. K.U. Leuven ESAT-COSIC, Kasteelpark Arenberg 10, 3001, Leuven-Heverlee, Belgium

    Claudia Diaz

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B. (2011). Adapting Helios for Provable Ballot Privacy. In: Atluri, V., Diaz, C. (eds) Computer Security – ESORICS 2011. ESORICS 2011. Lecture Notes in Computer Science, vol 6879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23822-2_19

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-23822-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23821-5

  • Online ISBN: 978-3-642-23822-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2023 Springer Nature