Secure Localization Using Dynamic Verifiers

  • Nashad A. Safa
  • Saikat Sarkar
  • Reihaneh Safavi-Naini
  • Majid Ghaderi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6879)


We consider secure positioning in wireless environments where mobile nodes use a trusted infrastructure to prove their location: a node claims a position and wants to prove to the verification infrastructure that it is actually located in that position. We propose a system that uses the notion of dynamic verifiers and provides security against collusion attack in which the adversary corrupts a set of nodes and its aim is to claim a position where none of the corrupted nodes are located. We give a detailed analysis of the system and show that under reasonable assumptions the protocol will reject false claims and the success probability of the adversary can be made arbitrarily small. We also give the results of our simulation that closely match the analysis. Our protocol is the first secure positioning protocol with security against collusion attack.


Wireless Sensor Network Mobile Node Success Probability Malicious Node Beacon Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Čapkun, S., Hubaux, J.P.: Secure positioning of wireless devices with application to sensor networks. In: IEEE INFOCOM, Miami, USA (2005)Google Scholar
  2. 2.
    Čapkun, S., Hubaux, J.P.: Secure positioning in wireless networks. IEEE Journal on Selected Areas in Communications 24(2), 221–232 (2006)CrossRefGoogle Scholar
  3. 3.
    Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptography. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Chiang, J.T., Haas, J.J., Hu, Y.-C.: Secure and precise location verification using distance bounding and simultaneous multilateration. In: WiSec, Zurich, Switzerland (2009)Google Scholar
  5. 5.
    Ferris, B., Haehnel, D., Fox, D.: Gaussian processes for signal strength-based location estimation. In: Robotics: Science and Systems, Philadelphia, USA (2006)Google Scholar
  6. 6.
    Jain, R., Puri, A., Sengupta, R.: Geographical routing using partial information for wireless ad-hoc networks. IEEE Personal Communications 8(1), 48–57 (2001)CrossRefGoogle Scholar
  7. 7.
    Jansen, W., Korolev, V.: A location-based mechanism for mobile device security. In: World Congress on Computer Science and Information Engineering, Los Angeles, USA (2009)Google Scholar
  8. 8.
    Navas, J.C., Imielinski, T.: Geocast-geographic addressing and routing. In: MobiCom, Budapest, Hungary (1997)Google Scholar
  9. 9.
    Rasmussen, K.B., Čapkun, S.: Implications of radio fingerprinting on the security of sensor networks. In: SecureComm, Nice, France (2007)Google Scholar
  10. 10.
    Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal Cryptology 5(1), 53–66 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Čapkun, S., Čagalj, M., Srivastava, M.: Secure localization with hidden and mobile base stations. In: INFOCOM, Barcelona, Spain (2006)Google Scholar
  12. 12.
    Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: WiSE, Rome, Italy (2003)Google Scholar
  13. 13.
    Singelee, D., Preneel, B.: Location verification using secure distance bounding protocols. In: MASS, Washington, DC, USA (2005)Google Scholar
  14. 14.
    Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  15. 15.
    Savvides, A., Han, C.-C., Srivastava, M.B.: Dynamic fine-grained localization in ad-hoc networks of sensors. In: Mobicom, Rome, Italy (2001)Google Scholar
  16. 16.
    Wibowo, S.B., Klepal, M., Pesch, D.: Time of Flight Ranging using Off-the-self IEEE802.11 WiFi Tags. In: POCA, Antwerp, Belgium (2009)Google Scholar
  17. 17.
    Tu, S.-J., Fischbach, E.: A New Geometric Probability Technique for an N-dimensional Sphere and Its Applications to Physics. arXiv:math-ph/0004021 (2000)Google Scholar
  18. 18.
    Elson, J., Estrin, D.: Time Synchronization for Wireless Sensor Networks. In: IPDPS, San Francisco, USA (2001)Google Scholar
  19. 19.
    Song, H., Zhu, S., Cao, G.: Attack-resilient Time Synchronization for Wireless Sensor Networks. In: MASS, Washington, DC, USA (2005)Google Scholar
  20. 20.
    Bardram, J.E., Kjær, R.E., Pedersen, M.Ø.: Context-aware user authentication – supporting proximity-based login in pervasive computing. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 107–123. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Ardagna, C.A., Cremonini, M., Damiani, E., De, S., di Vimercati, C., Samarati, P.: Supporting Location-based Conditions in Access Control Policies. In: ASIACCS, Taipei, Taiwan (2006)Google Scholar
  22. 22.
    Traynor, P., Schiffman, J., La Porta, T., McDaniel, P., Ghosh, A.: Constructing Secure Localization Systems with Adjustable Granularity Using Commodity Hardware. In: IEEE GLOBECOM, Miami, USA (2010)Google Scholar
  23. 23.
    Delaët, S., Mandal, P.S., Rokicki, M.A., Tixeuil, S.: Deterministic Secure Positioning in Wireless Sensor Networks. In: IEEE DCOSS, Santorini Island, Greece (2008)Google Scholar
  24. 24.
    Jadliwala, M., Zhong, S., Upadhyaya, S., Qiao, C., Hubaux, J.: Secure Distance-Based Localization in the Presence of Cheating Beacon Nodes. IEEE Transactions on Mobile Computing 9(6), 810–823 (2010)CrossRefGoogle Scholar
  25. 25.
    Garcia-Alfaro, J., Barbeau, M., Kranakis, E.: Secure Geolocalization of Wireless Sensor Nodes in the Presence of Misbehaving Anchor Nodes. Annals of Telecommunications (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nashad A. Safa
    • 1
  • Saikat Sarkar
    • 1
  • Reihaneh Safavi-Naini
    • 1
  • Majid Ghaderi
    • 1
  1. 1.Department of Computer ScienceUniversity of CalgaryCanada

Personalised recommendations