Statistical Mechanics on Isoradial Graphs

  • Cédric Boutillier
  • Béatrice de Tilière
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 11)


Isoradial graphs are a natural generalization of regular graphs which give, for many models of statistical mechanics, the right framework for studying models at criticality. In this survey paper, we first explain how isoradial graphs naturally arise in two approaches used by physicists: transfer matrices and conformal field theory. This leads us to the fact that isoradial graphs provide a natural setting for discrete complex analysis, to which we dedicate one section. Then we give an overview of explicit results obtained for different models of statistical mechanics defined on such graphs: the critical dimer model when the underlying graph is bipartite, the 2-dimensional critical Ising model, random walk and spanning trees and the q-state Potts model.


Partition Function Ising Model Gibbs Measure Dime Model Black Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Au-Yang, H., Perk, J.H.H.: Critical correlations in a Z-invariant inhomogeneous Ising model. Phys. A 144(1), 44–104 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Au-Yang, H., Perk, J.H.H.: Q-dependent susceptibilities in ferromagnetic quasiperiodic Z-invariant Ising models. J. Stat. Phys. 127, 265–286 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Au-Yang, H., Perk, J.H.H.: Q-dependent susceptibility in Z-invariant pentagrid Ising model. J. Stat. Phys. 127, 221–264 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bauer, M., Bernard, D.: CFTs of SLEs: The radial case. Phys. Lett. B 583(3–4), 324–330 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Baxter, R.J.: Eight-vertex model in lattice statistics. Phys. Rev. Lett. 26(14), 832–833 (1971)CrossRefGoogle Scholar
  6. 6.
    Baxter, R.J.: Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. Lond. Ser. A 404(1826), 1–33 (1986)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Baxter, R.J.: Perimeter Bethe Ansatz. J. Phys. A 20(9), 2557 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Baxter, R.J.: Exactly solved models in statistical mechanics. Academic, London [Harcourt Brace Jovanovich Publishers] (1989) Reprint of the 1982 originalGoogle Scholar
  9. 9.
    Beffara, V.: Is critical 2D percolation universal? In: In and out of equilibrium. 2, vol. 60 of Progr. Probab., pp. 31–58. Birkhäuser, Basel (2008)Google Scholar
  10. 10.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241(2), 333–380 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bobenko, A.I., Suris, Y.B.: Discrete differential geometry, vol. 98 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2008); Integrable structureGoogle Scholar
  12. 12.
    Bobenko, A.I., Mercat, C., Suris, Y.B.: Linear and nonlinear theories of discrete analytic functions.. Integrable structure and isomonodromic Green’s function. J. Reine Angew. Math. 583, 117–161 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Boutillier, C., de Tilière, B.: The critical Z-invariant Ising model via dimers: The periodic case. Probab. Theory Relat. Fields 147, 379–413 (2010) 10.1007/s00440-009-0210-1zbMATHCrossRefGoogle Scholar
  14. 14.
    Boutillier, C., de Tilière, B.: The critical Z-invariant Ising model via dimers: locality properties. Comm. Math. Phys. 301, 473–516 (2011) 10.1007/s00220-010-1151-3MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bücking, U.: Approximation of conformal mappings by circle patterns. Geom. Dedicata 137, 163–197 (2008) 10.1007/s10711-008-9292-7MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Burton, R., Pemantle, R.: Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21(3), 1329–1371 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chelkak, D., Smirnov, S.: Discrete complex analysis on isoradial graphs. Adv. in Math. 2281590–1630 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Inv. Math.Google Scholar
  19. 19.
    Cimasoni, D.: A generalized Kac-Ward formula. J. Stat. Mech. Theory Exp. 2010(07), P07023 (2010)CrossRefGoogle Scholar
  20. 20.
    Cimasoni, D.: Discrete Dirac operators on Riemann surfaces and Kasteleyn matrices. J. Eur. Math. Soc. to appearGoogle Scholar
  21. 21.
    de Tilière, B.: Partition function of periodic isoradial dimer models. Probab. Theory Relat. Fields 138(3–4), 451–462 (2007)zbMATHCrossRefGoogle Scholar
  22. 22.
    de Tilière, B.: Quadri-tilings of the plane. Probab. Theory Relat. Fields 137(3–4), 487–518 (2007)zbMATHGoogle Scholar
  23. 23.
    de Tilière, B.: Scaling limit of isoradial dimer models and the case of triangular quadri-tilings. Ann. I. H. Poincare B 43(6), 729–750 (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal field theory. Graduate Texts in Contemporary Physics. Springer, New York (1997)zbMATHCrossRefGoogle Scholar
  25. 25.
    Duffin, R.J.: Potential theory on a rhombic lattice. J. Combin. Theory 5, 258–272 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Fisher, M.E.: On the dimer solution of planar Ising models. J. Math. Phys. 7, 1776–1781 (1966)CrossRefGoogle Scholar
  27. 27.
    Friedrich, R., Werner, W.: Conformal restriction, highest-weight representations and SLE. Comm. Math. Phys. 243(1), 105–122 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Grimmett, G.: The random-cluster model, vol. 333 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2006)Google Scholar
  29. 29.
    Ishikawa, M., Wakayama, M.: Minor summation formulas of Pfaffians, survey and a new identity. In: Combinatorial methods in representation theory (Kyoto, 1998), vol. 28 of Adv. Stud. Pure Math., pp. 133–142. Kinokuniya, Tokyo (2000)Google Scholar
  30. 30.
    Kasteleyn, P.W.: The statistics of dimers on a lattice: I. the number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)Google Scholar
  31. 31.
    Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics, pp. 43–110. Academic, London (1967)Google Scholar
  32. 32.
    Kenyon, R.: Local statistics of lattice dimers. Ann. Inst. H. Poincaré Probab. Statist. 33(5), 591–618 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Kenyon, R.: Conformal invariance of domino tiling. Ann. Probab. 28(2), 759–795 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Kenyon, R.: An introduction to the dimer model. Lecture notes ICTP (2002) ICTP Lecture note series volume XVII (ISBN 92-95003-25-X) May 2004Google Scholar
  35. 35.
    Kenyon, R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. 148, 497–508 (1847)CrossRefGoogle Scholar
  37. 37.
    Kirchhoff, G.: An exploration of the permanent-determinant method. Electron. J. Combin. 5(46), 34 (1998)MathSciNetGoogle Scholar
  38. 38.
    Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60(3), 252–262 (1941)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part II. Phys. Rev. 60(3), 263–276 (1941)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)Google Scholar
  41. 41.
    Lebowitz, J.L., Martin-Löf, A.: On the uniqueness of the equilibrium state for Ising spin systems. Comm. Math. Phys. 25, 276–282 (1972)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Lenz, W.: Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern. Physik. Z. 21, 613–615 (1920)Google Scholar
  43. 43.
    Lieb, E.H.: Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett. 18, 692–694 (1967)CrossRefGoogle Scholar
  44. 44.
    Martìnez, J.R.R.: Correlation functions for the Z-invariant Ising model. Phys. Lett. A 227(3–4), 203–208 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Martìnez, J.R.R.: Multi-spin correlation functions for the Z-invariant Ising model. Phys. A 256(3–4), 463–484 (1998)Google Scholar
  46. 46.
    McCoy, B., Wu, T.T.: The Two-Dimensional Ising model. Harvard University Press, Cambridge (1973)zbMATHGoogle Scholar
  47. 47.
    Mercat, C.: Discrete Riemann surfaces and the Ising model. Comm. Math. Phys. 218(1), 177–216 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Perk, J.H.H., Au-Yang, H.: Yang-Baxter equations. In: Françoise, J.P., Naber, G.L., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics, pp. 465–473. Academic, Oxford (2006)CrossRefGoogle Scholar
  49. 49.
    Smirnov, S.: Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 239–244 (2001)zbMATHCrossRefGoogle Scholar
  50. 50.
    Smirnov, S.: Conformal invariance in random cluster models. I. holomorphic fermions in the Ising model. Ann. Math. 172(2), 1435–1467 (2010)zbMATHGoogle Scholar
  51. 51.
    Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics-an exact result. Philos. Mag. 6(68), 1061–1063 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de Probabilités et Modèles AléatoiresUniversité Pierre et Marie CurieParisFrance

Personalised recommendations