A Quenched Large Deviation Principle and a Parisi Formula for a Perceptron Version of the GREM

  • Erwin Bolthausen
  • Nicola Kistler
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 11)


We introduce a perceptron version of the Generalized Random Energy Model, and prove a quenched Sanov-type large deviation principle for the empirical distribution of the random energies. The dual of the rate function has a representation through a variational formula, which is closely related to the Parisi variational formula for the SK-model.


Free Energy Relative Entropy Gibbs Measure Polish Space Variational Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



E. Bolthausen is supported in part by the grant No 200020125247 ∕ 1 of the Swiss Science Foundation. N. Kistler is partially supported by the German Research Council in the SFB 611 and the Hausdorff Center for Mathematics.


  1. 1.
    Bolthausen, E., Kistler, N.: On a nonhierarchical version of the generalized random energy model. II. Ultrametricity. Stoch. Proces. Appl. 119, 2357–2386 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bovier, A., Kurkova, I.: Derrida’s generalized random energy models I & II. Annals de l’Institut Henri Poincaré 40, 439–495 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Derrida, B.: A generalization of the random energy model that includes correlations between the energies. J. Phys. Lett. 46, 401–407 (1985)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Mézard, M., Parisi, G., Virasoro, M.: Spin Glass theory and beyond, World Scientific, Singapore (1987)Google Scholar
  5. 5.
    Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys. 233, 1–12 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Talagrand, M.: Mean field models of spin glasses, Vol I, II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. vol. 54 & 55. Springer (2011)Google Scholar
  7. 7.
    Talagrand, M.: The Parisi Formula. Ann. Math. 163 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland
  2. 2.Institut für Angewandte MathematikRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations