Resource-Aware On-line RFID Localization Using Proximity Data

  • Christoph Scholz
  • Stephan Doerfel
  • Martin Atzmueller
  • Andreas Hotho
  • Gerd Stumme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6913)

Abstract

This paper focuses on resource-aware and cost-effective indoor-localization at room-level using RFID technology. In addition to the tracking information of people wearing active RFID tags, we also include information about their proximity contacts. We present an evaluation using real-world data collected during a conference: We complement state-of-the-art machine learning approaches with strategies utilizing the proximity data in order to improve a core localization technique further.

Keywords

Support Vector Machine Global Position System Receive Signal Strength Proximity Data Receive Signal Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    OpenBeacon Active RFID Project, http://www.openbeacon.org
  3. 3.
    SVM-Light Support Vector Machine, http://svmlight.joachims.org/
  4. 4.
    Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-Based User Location and Tracking System. In: INFOCOM, pp. 775–784 (2000)Google Scholar
  5. 5.
    Barrat, A., Cattuto, C., Colizza, V., Pinton, J.F., den Broeck, W.V., Vespignani, A.: High Resolution Dynamical Mapping of Social Interactions with Active RFID. CoRR abs/0811.4170 (2008)Google Scholar
  6. 6.
    Bekkali, A., Sanson, H., Matsumoto, M.: RFID Indoor Positioning Based on Probabilistic RFID Map and Kalman Filtering. In: WiMob, p. 21 (2007)Google Scholar
  7. 7.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cattuto, C., den Broeck, W.V., Barrat, A., Colizza, V., Pinton, J.F., Vespignani, A.: Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks. PLoS ONE 5(7) (July 2010)Google Scholar
  9. 9.
    Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3), 273–297 (1995)MATHGoogle Scholar
  10. 10.
    Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd edn. John Wiley & Sons, Inc., New York (2003)CrossRefGoogle Scholar
  11. 11.
    Glover, B., Bhatt, H.: RFID Essentials (Theory in Practice (O’Reilly)). O’Reilly Media, Inc., Sebastopol (2006)Google Scholar
  12. 12.
    Hightower, J., Vakili, C., Borriello, G., Want, R.: Design and Calibration of the SpotON Ad-Hoc Location Sensing System. Tech. rep. (2001)Google Scholar
  13. 13.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., den Broeck, W.V.: What’s in a Crowd? Analysis of Face-to-Face Behavioral Networks. CoRR 1006.1260 (2010)Google Scholar
  14. 14.
    Joachims, T.: Making large-Scale SVM Learning Practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, ch. 11, pp. 169–184. MIT Press, Cambridge (1999)Google Scholar
  15. 15.
    Li, X., Pahlavan, K.: Super-Resolution TOA Estimation with Diversity for Indoor Geolocation. IEEE Transactions on Wireless Communications 3(1), 224–234 (2004)CrossRefGoogle Scholar
  16. 16.
    Meriac, M., Fiedler, A., Hohendorf, A., Reinhardt, J., Starostik, M., Mohnke, J.: Localization Techniques for a Mobile Museum Information System. In: Proceedings of WCI (Wireless Communication and Information) (2007)Google Scholar
  17. 17.
    Mitchell, T.: Machine Learning (Mcgraw-Hill International Edit), 1st edn. McGraw-Hill Education, ISE Editions (October 1997)Google Scholar
  18. 18.
    Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: LANDMARC: Indoor Location Sensing Using Active RFID. Wireless Networks 10(6), 701–710 (2004)CrossRefGoogle Scholar
  19. 19.
    Niculescu, D., Badrinath, B.R.: Ad Hoc Positioning System (APS) Using AOA. In: INFOCOM (2003)Google Scholar
  20. 20.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket Location-Support System. In: MOBICOM, pp. 32–43 (2000)Google Scholar
  21. 21.
    Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall PTR, Upper Saddle River (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christoph Scholz
    • 1
  • Stephan Doerfel
    • 1
  • Martin Atzmueller
    • 1
  • Andreas Hotho
    • 2
  • Gerd Stumme
    • 1
  1. 1.Knowledge & Data Engineering GroupUniversity of KasselKasselGermany
  2. 2.Data Mining and Information Retrieval GroupUniversity of WürzburgWürzburgGermany

Personalised recommendations