Celebrity Watch: Browsing News Content by Exploiting Social Intelligence

  • Omar Ali
  • Ilias Flaounas
  • Tijl De Bie
  • Nello Cristianini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6913)

Abstract

Celebrity Watch is an automatically-generated website that presents up-to-date entertainment news from around the world. It demonstrates the application of many pattern analysis methods that allow us to autonomously monitor millions of news articles and hundreds of millions of references to people mentioned in them. We apply statistical methods to merge references into people, track their association to various topics of news, and generate social networks of their co-occurrences in articles. From this sea of data we select the forty most-relevant people and display them on the website, offering users a highly condensed view of the latest in entertainment news. The site updates itself throughout the day and is the final step in a large, fully-autonomous system that monitors online news media.

Keywords

news mining statistical inference trend detection social networks entertainment news 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali, O., Cristianini, N.: Information Fusion for Entity Matching in Unstructured Data. In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds.) AIAI 2010. IFIP Advances in Information and Communication Technology, vol. 339, pp. 162–169. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Boslaugh, S., Watters, P.A.: Statistics in a Nutshell: A Desktop Quick Reference (In a Nutshell (O’Reilly)). O’Reilly Media, Sebastopol (2008)Google Scholar
  3. 3.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework and graphical development environment for robust NLP tools and applications. In: Proc. of the 40th Anniversary Meeting of the Association for Computational Linguistics, pp. 168–175 (2002)Google Scholar
  4. 4.
    Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, ACM, New York (2007)Google Scholar
  5. 5.
    Flaounas, I., Ali, O., Turchi, M., Snowsill, T., Nicart, F., De Bie, T., Cristianini, N.: NOAM: News Outlets Analysis and Monitoring System. In: SIGMOD (2011), accepted for publicationGoogle Scholar
  6. 6.
    Pouliquen, B., Steinberger, R., Deguernel, O.: Story tracking: linking similar news over time and across languages. In: Proceedings of the Workshop on Multi-source Multilingual Information Extraction and Summarization, MMIES 2008, pp. 49–56. Association for Computational Linguistics, Stroudsburg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Omar Ali
    • 1
  • Ilias Flaounas
    • 1
  • Tijl De Bie
    • 1
  • Nello Cristianini
    • 1
  1. 1.Intelligent Systems LaboratoryBristol UniversityBristolUnited Kingdom

Personalised recommendations