Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)
MATH
Google Scholar
Canini, K., Shi, L., Griffiths, T.: Online inference of topics with latent dirichlet allocation. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, AISTATS 2009 (2009)
Google Scholar
Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., Blei, D.: Reading tea leaves: How humans interpret topic models. In: Proceeding of NIPS (2009)
Google Scholar
Ding, C., Li, T., Peng, W.: NMF and PLSI: Equivalence and a Hybrid Algorithm. In: Proc. SIGIR (2006)
Google Scholar
Drineas, P., Kannan, R., Mahoney, M.: Fast monte carlo algorithms for matrices iii: Computing a compressed approximate matrix decomposition. SIAM Journal of Computing 36, 184–206 (2006)
CrossRef
MATH
MathSciNet
Google Scholar
Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml
Frieze, A., Kannan, R., Vempala, S.: Fast monte-carlo algorithms for finding lowrank approximations. Journal of the ACM 51(6), 1025–1041 (2004)
CrossRef
MATH
MathSciNet
Google Scholar
Gaussier, E., Goutte, C.: Relations between PLSA and NMF and Implications. In: Proc. SIGIR (2005)
Google Scholar
Gehler, P., Holub, A., Welling, M.: The rate adapting poisson model for information retrieval and object recognition. In: Proceedings of ICML, pp. 337–344 (2006)
Google Scholar
Girolami, M., Kaban, A.: On an Equivalence between PLSI and LDA. In: Proc. SIGIR (2003)
Google Scholar
Hoffman, M., Blei, D., Bach, F.: Online learning for latent dirichlet allocation. In: Proceedings of Neural Information Processing Systems (NIPS 2010) (2010)
Google Scholar
Hofmann, T.: Probabilistic latent semantic indexing. Research and Development in Information Retrieval, pp. 50–57 (1999)
Google Scholar
Hofmann, T., Buhmann, J.: Active data clustering. In: Proceedings of NIPS (1997)
Google Scholar
Mahoney, M., Drineas, P.: Cur matrix decompositions for improved data analysis. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 106(3), 697–703 (2009)
CrossRef
MATH
MathSciNet
Google Scholar
Newman, D., Asuncion, A., Smyth, P., Welling, M.: Distributed algorithms for topic models. Journal of Machine Learning Research 10, 1801–1828 (2009)
MATH
MathSciNet
Google Scholar
Sato, I., Kurihara, K., Nakagawa, H.: Deterministic single-pass algorithm for lda. In: Proceedings of Neural Information Processing Systems, NIPS 2010 (2010)
Google Scholar
Settles, B.: Active learning literature survey. Tech. Rep. 1648, University of Wisconsin-Madison (2010)
Google Scholar
Smola, A., Narayanamurthy, S.: An architecture for parallel topic models. PVLDB 3(1), 703–710 (2010)
Google Scholar
Sun, J., Xie, Y., Zhang, H., Faloutsos, C.: Less is more: Sparse graph mining with compact matrix decomposition. Statistical Analysis and Data Mining 1(1), 6–22 (2008)
CrossRef
MathSciNet
Google Scholar
Wallach, H., Mimno, D., McCallum, A.: Rethinking lda: Why priors matter. In: Advances in Neural Information Processing Systems, vol. 22, pp. 1973–1981 (2009)
Google Scholar
Wang, X., Davidson, I.: Active spectral clustering. In: Proceedings of the IEEE International Conference on Data Mining (ICDM 2010) (2010)
Google Scholar
Yan, F., Xu, N., Qi, Y.: Parallel inference for latent dirichlet allocation on graphics processing units. In: Proceedings of NIPS (2009)
Google Scholar
Yao, L., Mimno, D., McCallum, A.: Efficient methods for topic model inference on streaming document collections. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 937–946 (2009)
Google Scholar
Yi, S., Wierstra, D., Schaul, T., Schmidhuber, J.: Stochastic search using the natural gradient. In: Proceedings of ICML, p. 146 (2009)
Google Scholar