Biodegradation of Mono-Aromatic Hydrocarbons by Fungi

  • Christian Kennes
  • María C. Veiga
Part of the Environmental Science and Engineering book series (ESE)


The biodegradation of organic compounds by fungal strains has been studied for several decades. Fungi have proven to be able to degrade a wide range of different pollutants, including aliphatic, aromatic and polycyclic aromatic compounds, but not necessarily as sole carbon and energy source.


Fungal Strain Phanerochaete Chrysosporium Styrene Oxide Polycyclic Aromatic Compound Xylene Isomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Braun-Lüllemann A, Majcherczyk A, Hüttermann A (1997) Degradation of styrene by white-rot fungi. Appl Microbiol Biotechnol 47:150–155CrossRefGoogle Scholar
  2. Cerniglia CE, Crow SA (1981) Metabolism of aromatic hydrocarbons by yeast. Arch Microbiol 129:9–13CrossRefGoogle Scholar
  3. Cofone L, Walker JD, Cooney JJ (1973) Utilization of hydrocarbons by Cladosporium resinae. J Gen Microbiol 76:243–246CrossRefGoogle Scholar
  4. Cox HHJ, Houtman JHM, Doddema HJ, Harder W (1993) Growth of the black yeast Exophiala jeanselmei on styrene and styrene-related compounds. Appl Microbiol Biotechnol 39:372–376CrossRefGoogle Scholar
  5. Cox HHJ, Magielsen FJ, Doddema HJ, Harder W (1996) Influence of the water content and water activity on styrene degradation by Exophiala jeanselmei in biofilters. Appl Microbiol Biotechnol 45:851–856CrossRefGoogle Scholar
  6. Davies JS, Wellman AM, Zajic JE (1973) Hyphomycetes utilizing natural gas. Can J Microbiol 19:81–85CrossRefGoogle Scholar
  7. Dodge RH, Cerniglia CE, Gibson DT (1979) Fungal metabolism of biphenyl. Biochem J 178:223–230Google Scholar
  8. Estévez E, Veiga MC, Kennes C (2005a) Biofiltration of waste gases with the fungi Exophiala oligosperma and Paecilomyces variotii. Appl Microbiol Biotechnol 67:563–568CrossRefGoogle Scholar
  9. Estévez E, Veiga MC, Kennes C (2005b) Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biotechnol 32:33–37CrossRefGoogle Scholar
  10. Fedorak PM, Westlake DWS (1986) Fungal metabolism of n-alkylbezenes. Appl Environ Microbiol 51:435–437Google Scholar
  11. García-Peña I, Ortiz I, Hernández S, Revah S (2008) Biofiltration of BTEX by the fungus Paecilomyces variotii. Intl Biodeter Biodegrad 62:442–447CrossRefGoogle Scholar
  12. Hammel KE (1992) Oxidation of aromatic pollutants by lignin degrading fungi and their extracellular peroxidises. Met Ions Biol Syst 28:41–60Google Scholar
  13. Hardison LK, Curry SS, Ciuffetti LM, Hyman MR (1997) Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 63:3059–3067Google Scholar
  14. Hasegawa Y, Okamoto T, Obata H, Tokuyama T (1990) Utilization of aromatic compounds by Trichosporon cutaneum KUY-6A. J Ferment Bioeng 69(2):122–124CrossRefGoogle Scholar
  15. Hofrichter M, Günther T, Fritsche W (1993) Metabolism of phenol, chloro and nitrophenols by the Penicillium strain Bi 7/2 isolated from a contaminated soil. Biodegrad 3:415–421CrossRefGoogle Scholar
  16. Hofrichter M, Bublitz F, Fritsche W (1995) Cometabolic degradation of o-cresol and 2, 6-dimethylphenol by Penicillium frequentans Bi 7/2. J Basic Microbiol 35:303–313CrossRefGoogle Scholar
  17. Hughes KA, Bridge P, Clark MS (2007) Tolerance of antarctic soil fungi to hydrocarbons. Sci Total Environ 372:39–548CrossRefGoogle Scholar
  18. Jin Y, Veiga MC, Kennes C (2006) Performance optimization of the fungal biodegradation of ?-pinene in gas-phase biofilter. Proc Biochem 41:172–1728Google Scholar
  19. Jones KH, Trudgill PW, Hopper DJ (1993) Metabolism of p-cresol by the fungus Aspergillus fumigatus. Appl Environ Microbiol 59:1125–1130Google Scholar
  20. Kennes C, Lema JM (1994a) Degradation of major compounds of creosotes (PAH and phenols) by Phanerochaete chrysosporium. Biotechnol Lett 16:759–764CrossRefGoogle Scholar
  21. Kennes C, Lema JM (1994b) Simultaneous biodegradation of p-cresol and phenol by the basydiomycete Phanerochaete chrysosporium. J Indust Microbiol 13:311–314CrossRefGoogle Scholar
  22. Kennes C, Veiga MC (2004) Fungal biocatalysts in the biofiltration of VOC-polluted air. J Biotechnol 113:305–319CrossRefGoogle Scholar
  23. Kennes C, Rene ER, Veiga MC (2009) Bioprocesses for air pollution control. J Chem Technol Biotechnol 84:1419–1436CrossRefGoogle Scholar
  24. Lindley ND, Heydeman MT (1983) Uptake of vapour phase [14C]dodecane by whole mycelia of Cladosporium resinae. J Gen Microbiol 129:2301–2305Google Scholar
  25. Lindley ND, Heydeman MT (1986) The uptake on n-alkanes from alkane mixtures during growth of the hudrocarbon-utilizing fungus Cladosporium resinae. Appl Microbiol Biotechnol 23:384–388CrossRefGoogle Scholar
  26. Lindley ND, Pedley JF, Kay SP, Heydeman MT (1986) The metabolism of yeasts and filamentous fungi which degrade hydrocarbon fuels. Intl Biodeter 22:281–287Google Scholar
  27. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microb Mol Biol Rev 64:461–488CrossRefGoogle Scholar
  28. Majcherczyk A, Johannes C, Hüttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335–341CrossRefGoogle Scholar
  29. Middelhoven WJ (1993) Catabolism of benzene compounds by ascomycetous and basidiomycetous yeast and yeastlike fungi. Antonie van Leeuwenhoek 63:125–144CrossRefGoogle Scholar
  30. Middelhoven WJ, Scorzetti G, Fell JW (1999) Trichosporon guehoae sp nov., an anamorphic basidiomycetous yeast. Can J Microbiol 45:686–690CrossRefGoogle Scholar
  31. Middlehoven WJ, Scorzetti G, Fell JW (2000) Trichosporon veenshuisii sp nov., an alkane-assimilating anamorphic basidiomycetous yeast. Intl J Syst Evol Microbiol 50:381–187CrossRefGoogle Scholar
  32. Milstein O, Vered Y, Shragina L, Gressel J, Flowers HM, Hüttermann A (1983) Metabolism of lignin related aromatic compounds by Aspergillus japonicus. Arch Microbiol 135:147–154CrossRefGoogle Scholar
  33. Neujahr HY, Varga JM (1970) Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur J Biochem 13:37–44CrossRefGoogle Scholar
  34. Nikolova N, Nenov V (2005) BTEX degradation by fungi. Water Sci Technol 51:87–93Google Scholar
  35. Onodera M, Endo Y, Ogasawara N (1989) Utilization of short-chain hydrocarbons and accumulation of methylketones by a gaseous hydrocarbon assimilating mold, Scedosporium sp. A-4. Agric Biol Chem 53:1431–1432CrossRefGoogle Scholar
  36. Peelen S, Rietjens IMCM, Boersma MG, Vervoort J (1995) Conversion of phenol derivatives to hydroxylated products by phenol hydroxylase from Trichosporon cutaneum. Eur J Biochem 227:284–291CrossRefGoogle Scholar
  37. Prenafeta-Boldú FX, Kuhn A, Luykx DMAM, Anke H, van Groenestijn JW, de Bont JAM (2001a) Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 105:477–484CrossRefGoogle Scholar
  38. Prenafeta-Boldú FX, Luykx DMAM, Vervoort J, de Bont JAM (2001b) Fungal metabolism of toluene: monitoring of fluorinated analogs by 19F nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 67:1030–1034CrossRefGoogle Scholar
  39. Prenafeta-Boldú FX, Vervoort J, Grotenhuis JTC, van Groenestijn JW (2002) Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Appl Environ Microbiol 68:2660–2665CrossRefGoogle Scholar
  40. Qi B, Moe WM, Kinney KA (2002) Biodegradation of volatile organic compounds by five fungal species. Appl Microbiol Biotechnol 58:684–689CrossRefGoogle Scholar
  41. Rafin C, Potin O, Veignie E, Lounes-Hadj Sahraoui A, Sancholle M (2000) Degradation of benzo[A]pyrene as sole carbon source by a non white rot fungus, Fusarium solani. Polycyclic Arom Hydroc 21:311–329CrossRefGoogle Scholar
  42. Rene ER, Špa?ková R, Veiga MC, Kennes C (2010a) Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus. J Hazard Mater 184:204–214CrossRefGoogle Scholar
  43. Rene ER, Veiga MC, Kennes C (2010b) Biodegradation of gas-phase styrene using Sporothrix variecibatus: Impact of pollutant load and transient operations. Chemosphere 79:221–227CrossRefGoogle Scholar
  44. Sakaguchi K, Kurane R, Murata M (1975) Assimilation of formaldehyde and other C1-compounds by Gliocladium deliquescens and Paecilomyces variotii. Agric Biol Chem 39:1605–1702CrossRefGoogle Scholar
  45. Schauer F, Henning K, Pscheidl H, Wittich RM, Fortnagel P, Wilkes H, Sinnwell V, Francke W (1995) Biotransformation of diphenyl ether by the yeast Trichosporon beigelii SBUG 752. Biodegrad 6:173–180CrossRefGoogle Scholar
  46. Scow KM, Li D, Manilal VB, Alexander M (1990) Mineralization of organic compounds at low concentrations by filamentous fungi. Mycol Res 94:793–398CrossRefGoogle Scholar
  47. Sietmann R, Hammer E, Specht M, Cerniglia CE, Schuer F (2001) Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides. Appl Environ Microbiol 67:4158–4165CrossRefGoogle Scholar
  48. Tortella GR, Diez MC (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212CrossRefGoogle Scholar
  49. Van Groenestijn JW, Heiningen WNM, Kraakman NJR (2001) Biofilters based on the action of fungi. Water Sci Technol 44:227–232Google Scholar
  50. Weber FJ, Hage KC, de Bont JAM (1995) Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source. Appl Environ Microbiol 61:3562–3566Google Scholar
  51. Wiseman A, Gondal J, Sims P (1975) 4-Hydroxylation of biphenyl by yeasts containing cytochrome P-450. Biochem Soc Trans 3:278–285Google Scholar
  52. Yadav JS, Reddy CA (1993) Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762Google Scholar
  53. Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Campus da ZapateiraUniversity of La CoruñaLa CoruñaSpain

Personalised recommendations