Microbial Degradation of Alkanes

  • S. N. Singh
  • B. Kumari
  • Shweta Mishra
Part of the Environmental Science and Engineering book series (ESE)


Petroleum hydrocarbons are introduced into the environment through excessive use of fuels and accidental spills during transportation and storage. Alkanes, a major fraction of crude oil, are saturated hydrocarbons and hence are chemically inert as non-polar molecules. However, a number of bacterial and fungal genera have been reported to degrade even high molecular weight alkanes in both aerobic and anaerobic conditions. The degradation process mainly involved enzymes such as methane monooxygenase (MMO), alkane hydroxylase and cytochrome P450 monooxygenase. Besides, a number of environmental factors affect the degradation of alkanes in soils.


Petroleum Hydrocarbon Cytochrome P450 Monooxygenase Chain Alkane Methane Monooxygenase AlkB Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Megeed A, Al-Harbi N, Al-Deyab S (2010) Hexadecane degradation by bacterial strains isolated from contaminated soils. Afr J Biotech 9(44):7487–7494Google Scholar
  2. Al-Tahhan RA, Sandrin TR, Bodonr AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3263–3268Google Scholar
  3. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209Google Scholar
  4. Ayala M, Torres E (2004) Enzymatic activation of alkanes: constraints and prospective. Appl Catal J 272(1–2):1–13Google Scholar
  5. Baik MH, Newcomb M, Friesner RA, Lippard SJ (2003) Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem Rev 103:2385–2419Google Scholar
  6. Baptist JN, Gholson RK, Coon MJ (1963) Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim Biophys Acta 69:40–47Google Scholar
  7. Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168Google Scholar
  8. Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23(2):100–105Google Scholar
  9. Berekaa MM, Steinbüchel A (2000) Microbial Degradation of the Multiply Branched Alkane 2,6,10,15,19,23-Hexamethyltetracosane (Squalane) by Mycobacterium fortuitum and Mycobacterium ratisbonense. Appl Environ Microbiol 66(1):4462–4467Google Scholar
  10. Berthe-Corti L, Fetzner S (2002) Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions. Acta Biotechnol 22:299–336Google Scholar
  11. Bertrand E, Sakai R, Rozhkova-Novosad E, Moe L, Fox BG, Groves JT, Austin RN (2005) Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells. J Inorg Biochem 99:1998–2006Google Scholar
  12. Bogus?awska-Was E, D?browski W (2001) The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Intl J Hyg Environ Health 203(5–6):451–458Google Scholar
  13. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223Google Scholar
  14. Bosetti A, van Beilen JB, Preusting H, Lageveen RG, Witholt B (1992) Production of primary aliphatic alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme system. Enzym Microb Technol 14:702–708Google Scholar
  15. Brassington KJ, Hough RL, Paton GI, Semple KT, Risdon GC, Crossley J, Hay I, Askari K, Pollard SJT (2007) Weathered hydrocarbon wastes: a risk management primer. Crit Rev Environ Sci Technol 37:199–232Google Scholar
  16. Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673Google Scholar
  17. Caiazza NC, Shanks RM, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361Google Scholar
  18. Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two isolates and a bacterial consortium. Appl Environ Microbiol 72:4274–4282Google Scholar
  19. Callaghan AV, Tierney M, Phelps CD, Young LY (2009) Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium. Appl Environ Microbiol 75:1339–1344Google Scholar
  20. Cameotra SS, Makkar RS (2004) Recent application of biosurfactant as biological and immunological molecules. Curr Opin Microbiol 7:262–266Google Scholar
  21. Chaillan F, Le Fleche A, Bury E, Phantavonga Y, Grimontb P, Saliotc A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155(7):587–595Google Scholar
  22. Chenier MR, Beaumier D, Roy R, Driscoll BT, Lawrence JR, Greer CW (2003) Impact of seasonal variations and nutrient inputs on nitrogen cycling and degradation of hexadecane by replicated river biofilms. Appl Environ Microbiol 69:5170–5177Google Scholar
  23. Choi S-Y, Eaton PE, Kopp DA, Lippard SJ, Newcomb M, Shen R (1999) Cationic species can be produced in soluble methane monooxygenase-catalyzed hydroxylation reactions; radical intermediates are not formed. J Am Chem Soc 121:12198–12199Google Scholar
  24. Christova N, Tuleva B, Lalchev Z, Jordanova A, Jordanov B (2004) Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-Hexadecane. Z Naturforsch C 59(1–2):70–74Google Scholar
  25. Chrzanowski ?, Kaczorek E, Olszanowski A (2006) The ability of Candida maltosa for hydrocarbon and emulsified hydrocarbon degradation polish. J Environ Stud 15(1):47–51Google Scholar
  26. Coon MJ (2005) Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338:378–385Google Scholar
  27. Craft DL, Madduri KM, Eshoo M, Wilson CR (2003) Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to a, v-dicarboxylic acids. Appl Environ Microbiol 69:5983–5991Google Scholar
  28. Desai J, Banat I (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64Google Scholar
  29. Desai J, Desai A (1993) Production of biosurfactants. In: Kosaric N (ed) Biosurfactants: production, properties, applications. Marcel Dekker, New York, pp 65–97Google Scholar
  30. Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon J-G (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912Google Scholar
  31. Dubbels BL, Sayavedra-Soto LA, Arp DJ (2007) Butane monooxygenase of Pseudomonas butanovora: purification and biochemical characterization of a terminal-alkane hydroxylating diiron monooxygenase. Microbiology 153:1808–1816Google Scholar
  32. Eastcott L, Shiu WY, Mackay D (1988) Environmentally relevant physical–chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem Pollut 4:191–216Google Scholar
  33. Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol 57:1441–1447Google Scholar
  34. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80–2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607Google Scholar
  35. Finnerty WR (1988) Lipids of Acinetobacter. In: Proceedings of the world conference biotechnology fats and oils industry pp 184–188Google Scholar
  36. Foght JM, Fedorak PM, Westlake DWS (1990) Mineralization of [14C] hexadecane and [14C] phenanthrene in crude oil: specifi city among bacterial isolates. Can J Microbiol 36:169–175Google Scholar
  37. Fox BG, Froland WA, Dege JE, Lipscomb JD (1989) Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem 264(17):10023–10033Google Scholar
  38. Fox BG, Borneman JG, Wackett LP, Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29(27):6419–6427Google Scholar
  39. Fritsche W, Hofrichter M (2000) Aerobic degradation by microorganisms. In: Rehm HJ, Reed G (eds) Biotechnology 11b, Environmental Processes II. Wiley-VCH, WeinheimGoogle Scholar
  40. Gallo MJ, Bertrand JC, Roche B, Azoulay E (1973) Alkane oxidation in Candida tropicalis. Biochim Biophys Acta (BBA)—Lipids Lipid Metab 296(3):624–638Google Scholar
  41. Gary S, Sayler  , Hooper SW, Layton AC, Henry King JM (1990) Catabolic plasmids of environmental and ecological significance. Microbial Ecol 19:1–207Google Scholar
  42. Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139Google Scholar
  43. Golyshin PN, Chernikova T, Abraham WR, Lünsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911Google Scholar
  44. Groves JT (2003) The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies. Proc Natl Acad Sci U S A 100:3569–3574Google Scholar
  45. Groves JT (2005) Models and mechanisms of cytochrome P450 action. Kluwer Academic/Plenum, New YorkGoogle Scholar
  46. Gutiérrez T, Leo VV, Walker GM, Green DH (2009) Emulsifying properties of a glycoprotein extract produced by a marine Flexibacter species strain TG382. Enzyme Microb Technol 45:53–57Google Scholar
  47. Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:2005–2014Google Scholar
  48. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352Google Scholar
  49. Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182Google Scholar
  50. Heringa JW, Huybregste R, van der Linden AC (1961) n-alkane oxidation by a Pseudomonas. Formation and,-oxidation of intermediate fatty acids. Antonie van Leeuwenhoek. J Microbiol Serol 27:51–58Google Scholar
  51. Higashioka Y, Kojima H, Nakagawa T, Sato S, Fukui M (2009) A novel n-alkane-degrading bacterium as a minor member of p-xylene-degrading sulfate-reducing consortium. Biodegradation 20:383–390Google Scholar
  52. Holden PA, LaMontagne MG, Bruce AK, Miller WG, Lindow SE (2002) Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Appl Environ Microbiol 68:2509–2518Google Scholar
  53. Hua X, Wu Z, Zhang H, Lu D, Wang M, Liu Y, Liu Z (2010) Degradation of hexadecane by Enterobacter cloacae strain TU that secrets an exopolysaccharide as a bioemulsifer. Chemosphere 80:951–956Google Scholar
  54. Iyer A, Mody K, Jha B (2006) Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme Microb Technol 38:220–222Google Scholar
  55. Jin Y, Lipscomb JD (2001) Desaturation reactions catalyzed by soluble methane monooxygenase. J Biol Inorg Chem 6:717–725Google Scholar
  56. Jones KC, Alcock RE, Johnson DL, Northcott GL, Semple KT, Woolgar PJ (1996) Organic chemicals in contaminated land: analysis, significance and research priorities. Land Contam Reclam 3:189–197Google Scholar
  57. Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180Google Scholar
  58. Kang YS, Park W (2009) Protection against diesel oil toxicity by sodium chloride induced exopolysaccharide in Acinetobacter sp. strain DR1. J Biosci Bioeng 109:118–123Google Scholar
  59. Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J Biosci Bioeng 91:64–70Google Scholar
  60. Kato T, Miyanaga A, Kanaya S, Morikawa M (2009) Alkane inducible proteins in Geobacillus thermoleovorans B23 BMC. Microbiology 9:60Google Scholar
  61. Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulfate-reducing bacteria. Nature 449:898–902Google Scholar
  62. Kok M, Oldenhuis R, van der Linden MPG, Raatjes P, Kingma J, van Lelyveld PH, Witholt B (1989) Pseudomonas oleovorans alkane hydroxylase gene sequence and expression. J Biol Chem 264:5435–5441Google Scholar
  63. Kopp D, Lippard SJ (2002) Soluble methane monooxygenase: activation of dioxygen and methane. Curr Opin Chem Biol 6:568–576Google Scholar
  64. Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD(+)-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128Google Scholar
  65. Kotani T, Yurimoto H, Kato N, Sakai Y (2007) Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 189:886–893Google Scholar
  66. Kumar AS, Mody K, Jha B (2007) Evaluation of biosurfactant/bioemulsifier production by a marine bacterium. Bull Environ Contam Toxicol 79:617–621Google Scholar
  67. Kurth EG, Doughty DM, Bottomley PJ, Arp DJ, Sayavedra-Soto LA (2008) Involvement of BmoR and BmoG in n-alkane metabolism in Pseudomonas butanovora. Microbiol 154(1):129–147Google Scholar
  68. Labinger JA, Bercaw JE (2002) Understanding and exploiting C–H bond activation. Nature 417:507Google Scholar
  69. Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81:355–362Google Scholar
  70. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315Google Scholar
  71. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27(4):449–479Google Scholar
  72. Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Bartlam M, Wang L, Rao Z (2008) Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the longchain alkane hydroxylase. J Mol Biol 376:453–465Google Scholar
  73. Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 39:147–164Google Scholar
  74. Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55(3):1181–1186Google Scholar
  75. Macleod JA, Morriss AWJ, Semple KT (2001) The role of microorganisms in ecological risk assessment of hydrophobic organic contaminants in soils. Adv App Microbiol 48:172–212Google Scholar
  76. Maeng JH, Sakai Y, Ishige T, Tani Y, Nobuo N (1996) Diversity of dioxygenases that catalyze the first step of oxidation of long-chain n-alkanes in Acinetobacter sp. M-l. FEMS Microbiol Lett 141:177–182Google Scholar
  77. Maier T, Foerster H-H, Asperger O, Hahn U (2001) Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 286:652–658Google Scholar
  78. Malachowsky K, Phelps TJ, Teboli AB, Minnikin DE, White DC (1994) Aerobic mineralization of trichloroethylene, vinyl chloride and aromatic compounds by Rhodococcus sp. Appl Environ Microbiol 60:542–548Google Scholar
  79. Marchant R, Sharkey FH, Banat IM, Rahman TJ, Perfumo A (2006) The degradation of n-hexadecane in soil by Thermophilic geobacilli. FEMS Microbiol Ecol 56(1):44–54Google Scholar
  80. Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092Google Scholar
  81. Martínez-Checa F, Toledo FL, EI Mabrouki K, Quesada E, Calvo C (2007) Characteristics of bioemulsifier V2–7 synthesized in culture media added of hydrocarbons: chemical composition, emulsifying activity and rheological properties. Bioresour Technol 98:3130–3135Google Scholar
  82. Mbadinga SM, Wang LY, Zhou L, Liu JF, Gu JD, Mua BZ (2011) Microbial communities involved in anaerobic degradation of alkanes. Intl Biodeter Biodegrad 65:1–13Google Scholar
  83. McKenna EJ, Coon MJ (1970) Enzymatic w-oxidation. IV. Purification and properties of the w-hydroxylase of Pseudomonas oleovorans. J Biol Chem 245:3882–3889Google Scholar
  84. Meintanis C, Chalkou KI, Kormas KA, Karagouni AD (2006) Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island. Biodegradation 17:3–9Google Scholar
  85. Merino J, Bucala V (2007) Effect of temperature on the release of hexadecane from soil by thermal treatment. J Hazarad Mat 143:455–461Google Scholar
  86. Moran AC, Olivera N, Commendatore M, Esteves JL, Sineriz F (2000) Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9. Biodegradation 11:65–71Google Scholar
  87. Murrell JC, Gilbert B, McDonald IR (2000a) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332Google Scholar
  88. Murrell JC, McDonald IR, Gilbert B (2000b) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225Google Scholar
  89. Nakayama N, Takemae A, Shoun H (1996) Cytochrome 450 foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem 119:435–440Google Scholar
  90. Newcomb M, Shen R, Lu Y, Coon MJ, Hollenberg PF, Kopp DA, Lippard SJ (2002) Evaluation of norcarane as a probe for radicals in cytochrome P450- and soluble methane monooxygenase-catalyzed hydroxylation reactions. J Am Chem Soc 124:6879–6886Google Scholar
  91. Nguyen HHT, Schiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME, Chan SI (1994) The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 269:14995–15005Google Scholar
  92. Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508Google Scholar
  93. Östeberg TL, Jonsson A, Lundström US (2006) Accelerated biodegradation of n-alkanes in aqueous solution by the addition of fermented whey. Intl Biodeter Biodegrad 57(3):190–194Google Scholar
  94. Peters MW, Meinhold MW, Glieder MA, Arnold FH (2003) Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J Am Chem Soc 125:13442–13450Google Scholar
  95. Rahman KSM, Thahira-Rahmana J, Lakshmanaperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Biores Technol 85(3):257–261Google Scholar
  96. Ramírez ME, Zapiéna B, Zegarraa HG, Rojasc NG, Fernández LC (2008) Assessment of hydrocarbon biodegradability in clayed and previous weathered polluted soils. Intl Biodeter Biodegrad 63:347–353Google Scholar
  97. Riser-Roberts E (1998) Remediation of petroleum contaminated soils. CRC Press, Boca RatonGoogle Scholar
  98. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490Google Scholar
  99. Ron EZ, Rosenberg E (2001) A review of natural roles of biosurfactants. Environ Microbiol 3:229–236Google Scholar
  100. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252Google Scholar
  101. Rosenberg E, Ron E (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162Google Scholar
  102. Rothen SA, Sauer M, Sonnleitner B, Witholt B (1998) Biotransformation of octane by E. coli HB101[pGEc47] on defined medium: octanoate production and product inhibition. Biotechnol Bioeng 58:356–365Google Scholar
  103. Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcani-vorax borkumensis induced by alkane utilization. J Bacteriol 188:3763–3773Google Scholar
  104. Sakai Y, Maeng JH, Kubota S, Tani A, Tani Y, Kato N (1996) A non-conventional dissimilation pathway for long chain n-alkanes in Acinetobacter sp. M-1 that starts with a dioxygenase reaction. J Ferment Bioeng 81(4):286–291Google Scholar
  105. Sanscartier D, Zeeba B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55(1):167–173Google Scholar
  106. Schneiker S, dos Santos VAPM, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Pühler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhölter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004Google Scholar
  107. Semple KT, Reid BJ, Fermor TR (2001) Review of composting strategies to treat organic pollutants in contaminated soils. Environ Pollut 112:269–283Google Scholar
  108. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794Google Scholar
  109. Shanklin J, Achim C, Schmidt H, Fox BG, Munck E (1997) Mossbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci U S A 94:2981–2986Google Scholar
  110. Shimizu S, Yasui K, Tani Y, Yamada H (1979) Acyl-CoA oxidase from Candida tropicalis. Biochem Biophys Res Commun 91:108–113Google Scholar
  111. Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, New YorkGoogle Scholar
  112. Sluis MK, Sayavedra  , Soto LA, Arp DJ (2002) Molecular analysis of the soluble butane monooxygenase from Pseudomonas butanovora. Microbiology 148:3617–3629Google Scholar
  113. Smits THM, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184:1733–1742Google Scholar
  114. So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69:3892–3900Google Scholar
  115. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2887Google Scholar
  116. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271Google Scholar
  117. Steiert JG, Pignatello JJ, Crawford RL (1987) Degradation of chlorinated phenols by a pentachlorophenol degrading bacterium. Appl Environ Microbiol 53:907–910Google Scholar
  118. Stortini AM, Martellini T, Del Bubba M, Lepri L, Capodaglio G, Cincinelli A (2009) n-alkanes, PAHs and surfactants in the sea surface microlayer and sea water samples of the Garlache Inlet sea (Antarctica). Microchem J 92:37–43Google Scholar
  119. Stroud JL, Paton GI, Semple KT (2008) Linking chemical extraction to microbial degradation of 14C-hexadecane in soil. Environ Pollut 156(2):474–481Google Scholar
  120. Suchanek M, Kostal J, Demnerova K, Kralova B (2000) Use of sodium dodecyl sulphate for stimulation of biodegradation of n-alkanes without residual contamination by the surfactant. Intl Biodeter Biodegrad 45(1–2):27–33Google Scholar
  121. Tani A, Ishige T, Sakai Y, Kato N (2001) Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J Bacteriol 183:1819–1823Google Scholar
  122. Thijsse GJE, van der Linden AC (1963) Pathways of hydrocarbon dissimilation by a Pseudomonas as revealed by chloramphenicol. Antonie van Leeuwenhoek J Microbiol Serol 29:89–100Google Scholar
  123. Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73(10):3327–3332Google Scholar
  124. Towell MG, Bellarby J, Paton GI, Simon CF, Pollard JT, Semple KT (2011) Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities. Environ Pollut 159:515–523Google Scholar
  125. Valentine AM, Wilkinson B, Liu KE, Komar-Panicucci S, Priestly ND, Williams PG, Morimoto H, Floss HG, Lippard SJ (1997) Tritiated chiral alkanes as substrates for soluble methane monooxygenase from Methylococcus capsulatus (Bath): probes for the mechanism of hydroxylation. J Am Chem Soc 119:1818–1827Google Scholar
  126. van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314Google Scholar
  127. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21Google Scholar
  128. van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174Google Scholar
  129. van Beilen JB, Wubbolts M, Qi C, Nieboer M, Witholt B (1995) Effects of two-liquid-phase systems and expression of alk genes on the physiology of alkane?oxidizing strains. In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular Biology of Pseudomonads, ASM Press, Washington, pp 35–47Google Scholar
  130. van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of the Pseudomonas putida alkane degradation gene cluster and flanking insertion sequence: evolution and regulation of the alk genes. Microbiology 147:1621–1630Google Scholar
  131. van Beilen JB, Neuenschwander M, Smits THM, Roth C, Balada SB, Witholt B (2002) Rubredoxins involved in alkane oxidation. J Bacteriol 184:1722–1732Google Scholar
  132. van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440Google Scholar
  133. van Beilen JB, Marin MM, Smits TH, Rothlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6:264–273Google Scholar
  134. van Hamme JD, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mole Biol Rev 67:649Google Scholar
  135. Vatsyayan P, Kumar AK, Goswami P, Goswami P (2008) Broad substrate Cytochrome P450 monooxygenase activity in the cells of Aspergillus terreus MTCC 6324. Biores Technol 99(1):68–75Google Scholar
  136. Volke-Sepulveda TL, Gutierrez-Rojas M, Favela-Torres E (2003) Biodegradation of hexadecane in liquid and solid-state fermentations by Aspergillus niger. Biores Technol 87:81–86Google Scholar
  137. Volke-Sepùlvda T, Guti?rrez-Rojas M, Favela-Torres E (2006) Biodegradation of high concentrations of hexadecane by Aspergillus niger in a solid-state system: Kinetic analysis. Biores Technol 94(14): 1583–1591Google Scholar
  138. Vomberg A, Klinner V (2000) Distribution of alk gene with in n-alkane degrading bacteria. J Appl Microbiol 89:339–348Google Scholar
  139. Wang LY, Mbadinga SM, Li H, Liu JF, Yang SZ, Mu BZ (2010) Anaerobic degradation of petroleum hydrocarbons and enlightenment of the prospects for microbial bio-gasification of residual oil. Microbiology 37:96–102Google Scholar
  140. Watanabe HK, Takahashi N (1997) Isolation and characterization of slime-producing bacteria capable of utilizing petroleum hydrocarbons as a sole carbon source. J Ferment Bioeng 84:528–531Google Scholar
  141. Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221Google Scholar
  142. Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low-temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584Google Scholar
  143. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276Google Scholar
  144. Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Arch Microbiol 177:235–243Google Scholar
  145. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lünsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785Google Scholar
  146. Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp nov., a novel marine bacterium that obligately utilizes hydro-carbons. Int J Syst Evol Microbiol 54:141–148Google Scholar
  147. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266Google Scholar
  148. Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Schreiber F, Ehrenreich P, Behrends A, Wilkes H, Kube M, Reinhardt R, Widde F (2011) Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activationemi. Environ Microbiol Rep 3(1):125–135Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Environmental Sciences DivisionCSIR-National Botanical Research InstituteLucknowIndia

Personalised recommendations