Microbial Degradation of Plastics and Water-Soluble Polymers

  • Fusako Kawai
Part of the Environmental Science and Engineering book series (ESE)


Polymer chemistry began approximately 90 years ago, when Staudinger established the theoretical background from which commercial production of synthetic polymers arose. Synthetic polymers, especially solid ones known as plastics, have been at the forefront since World War II. Annual worldwide production of plastics amounts to more than 200 million tons. Synthetic polymers were originally designed to replace natural polymers, with the advantages of long life (no decay), better performance, plasticity of form, and low cost of production, dependent on cheap petroleum. However, public concern over the use of synthetic polymers has been increasing since the end of 1980s as plastic bags have been polluting the environment. Plastic bags can be found everywhere from the deep sea to the highest mountains and can cause serious environmental problems by threatening wildlife and destroying scenic areas.


Synthetic Polymer Cyanophycin Granule Polypeptide Pycnoporus Cinnabarinus True Lipase Aromatic Copolyesters 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albertsson AC, Andersson SO, Karlsson A (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87Google Scholar
  2. Al-Malaika S, Marogi AM, Scott G (1986) Mechanisms of antioxidant action: time-controlled photoantioxidaants for polyethylene based on soluble iron compounds. J Appl Polym Sci 31:685–698Google Scholar
  3. Baere L, De Wilde B, Tillinger R (1994) Standard test methods for polymer degradation in solid waste treatment systems. In: Doi Y, Fukuda K (eds) Studies in polymer science-biodegradable plastics and polymers. Elsevier, The Netherlands, pp 323–330Google Scholar
  4. Charoenpanich J, Tani A, Moriwaki N, Kimbara K, Kawai F (2006) Dual regulation of a polyethylene glycol degradative operon by AraC-type and GalR-type regulators in Sphingopyxis macrogoltabida strain 103. Microbiology 152:3025–3034Google Scholar
  5. Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283:25854–25862Google Scholar
  6. Chiellini E, Corti A, D’Antone S, Solaro R (2003) Biodegradartion of poly(vinyl alcohol) based materials. Prog Polym Sci 28:963–1014Google Scholar
  7. Deguchi T, Kakezawa M, Nishida T (1997) Nylon biodegradation by lignin-degrading fungi. Appl Environ Microbiol 63:329–331Google Scholar
  8. Deguchi T, Kitaoka Y, Kakezawa M, Nishida T (1998) Purification and characterization of a nylon-degrading enzyme. Appl Environ Microbiol 64:1366–1371Google Scholar
  9. Doser C, Zschocke P, Biedermann R, Sussmuth R, Trauter J (1997) Mikrobieller abbau von polyacrylsaureshlichten. Texilveredlung 32:245–249Google Scholar
  10. Dwyer DF, Tiedje JM (1986) Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia. Appl Environ Microbiol 52:852–856Google Scholar
  11. Enokibara S, Kawai F (1997) Purification and characterization of an ether bond-cleaving enzyme involved in the metabolism of polyethylene glycol. J Ferment Bioeng 83:549–554Google Scholar
  12. Frings J, Schramm E, Schink B (1992) Enzymes involved in anaerobic polyethylene glycol degradation by Pelobacter venetianus and Bacteroides strain PG1. Appl Environ Microbiol 58:2164–2167Google Scholar
  13. Gordienko AD, Kudokotseva EV (1980) Study of the functional composition of mitochondria in cellular suspensions subject to a cryoprotectant solution. Kriobiol Kriomed 7:32–34Google Scholar
  14. Grant MA, Payne WJ (1983) Anaerobic growth of Alcaligenes faecalis var. denitrificans at the expense of ether glycols and nonionic detergents. Biotechnol Bioeng 25:627–630Google Scholar
  15. Haines J, Alexander M (1975) Microbial degradation of polyethylene glycols. Appl Microbiol 29:621–625Google Scholar
  16. Hayashi T (1998) Microbial degradation of poly(sodium acrylate). Recent Res Dev Microbiol 2:335–349Google Scholar
  17. Hayashi T, Mukouyama M, Sakano K, Tani Y (1993) Degradaion of a sodium acrylate oligomer by an Arthrobacter sp. Appl Environ Microbiol 59:1555–1559Google Scholar
  18. Hayashi T, Nishimura H, Sakano K, Tani Y (1994) Microbial degradation of poly(sodium acrylate). Biosci Biotechnol Biochem 58:444–446Google Scholar
  19. Herald DA, Keil K, Bruns DE (1989) Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem Pharmacol 38:73–76Google Scholar
  20. Hiraishi T, Kajiyama M, Tabata K, Abe H, Yamato I, Doi Y (2003a) Biochemistry and molecular characterization of poly(aspartic acid) hydrolase-2 from Sphingomonas sp. KT-1. Biomacromolecules 4:1285–1292Google Scholar
  21. Hiraishi T, Kajiyama M, Tabata K, Yamato I, Doi Y (2003b) Genetic analysis and characterization of poly(aspartic acid) hydrolase-1 from Shphingomonas sp. KT-1. Biomacromolecule 4:80–86Google Scholar
  22. Hiraishi T, Kajiyama M, Yamato I, Doi Y (2004) Enzymatic hydrolyxis of ?- and ?-oligo(l-aspartic acid)s by poly(aspartic acid) hydrolases-1 and 2 from Sphingomonas sp. KT-1. Macromol Biosci 4:330–339Google Scholar
  23. Hirota-Mamoto R, Nagai R, Tachibana S, Yasuda M, Tani A, Kimbara K, Kawai F (2006) Cloning and expression of the gene for periplasmic poly(vinyl alcohol) dehydrogenase from Sphingomonas sp. strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology 152:1941–1949Google Scholar
  24. Hosoya H, Miyazaki N, Sugisaki Y, Takanashi E, Tsurufuji M, Yamasaki M, Tamura G (1978) Bacterial degradation of synthetic polymers and oligomers with the special reference to the case of polyethylene glycol. Agric Biol Chem 42:1545–1552Google Scholar
  25. Hu X, Fukutani A, Liu X, Kimbara K, Kawai F (2007a) Isolation of bacteria able to grow on both polyethylene glycol (PEG) and polypropylene glycol (PPG) and their PEG/PPG dehydrogenases. Appl Microbiol Biotechnol 73:1407–1413Google Scholar
  26. Hu X, Mamoto R, Shimomura Y, Kimbara K, Kawai F (2007b) Cell surface structure enhancing uptake of polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3. Arch Microbiol 188:235–241Google Scholar
  27. Hu X, Liu X, Tani A, Kimbara K, Kawai F (2008a) Proposed oxidative metabolic pathway for polypropylene glycol in Sphingobium sp. strain PW-1. Biosci Biotechnol Biochem 72:1115–1118Google Scholar
  28. Hu X, Mamoto R, Fujioka Y, Tani A, Kimbara K, Kawai F (2008b) The pva operon is located on the megaplasmid of Sphingopyxis sp. strain 113P3 and is constitutively expressed, although expression is enhanced by PVA. Appl Micobiol Biotechnol 78:685–693Google Scholar
  29. Hu X, Osaki S, Hayashi M, Kaku M, Katuen S, Kobayashi H, Kawai F (2008c) Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and Bacillus species derived from composts. J Polym Environ 16:103–108Google Scholar
  30. Hu X, Thumarat U, Zhang X, Tang M, Kawai F (2010) Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Appl Microbiol Biotechnol 87:729–771Google Scholar
  31. Iwahashi M, Katsuragi T, Tani Y, Tsutsumi K, Kakiuchi K (2003) Mechanism for degradation of poly(sodium acrylate) by bacterial consortium No. L7–98. J Biosci Bioeng 95:483–487Google Scholar
  32. Jarerat A, Tokiwa Y (2001) Degradation of poly(l-lactide) by a fungus. Macromol Biosci 1:136–140Google Scholar
  33. Jensen KA Jr, Houman CJ, Ryan ZC, Hammel KE (2001) Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67:2705–2711Google Scholar
  34. Kakudo S, Negoro S, Urabe I, Okada H (1993) Nylon oligomer degradation gene, nylC on plasmid pOAD2 from a Flavobacerium strain encodes endo-type 6-aminohecanoate oligomer hydrolase: purification and characterization of the nylC gene product. Appl Environ Microbiol 59:3978–3980Google Scholar
  35. Kakudo S, Negoro S, Urabe I, Okada H (1995) Characterization of endotype 6-aminohexanoate-oligomer hydrolase from Flavobacerium sp. J Ferment Bioeng 80:12–17Google Scholar
  36. Kanagawa K, Negoro S, Takada N, Okada H (1989) Plasmid dependence of Pseudomonas sp. strain NK87 enzymes that degrade 6-aminohexanoate-cyclic dimer. J Bacteriol 171:3181–3186Google Scholar
  37. Kawai F (1987) The biochemistry of degradation of polyethers. CRC Crit Rev Biotechnol 6:273–307Google Scholar
  38. Kawai F (1993) Bacterial degradation of acrylic oligomers and polymers. Appl Microbiol Biotechnol 39:382–385Google Scholar
  39. Kawai F (1995) Breakdown of plastics and polymers by microorganisms. In: Fichter A (ed) Advances in biochemical engineering/biotechnology, vol 52. Springer, Germany, pp 151–194Google Scholar
  40. Kawai F (1996) Bacterial degradation of a new polyester, polyethylene glycol-phthalate polyester. J Environ Polym Degrad 4:21–28Google Scholar
  41. Kawai F (1999) Sphingomonads involved in the biodegradation of xenobiotic polymers. J Ind Microbiol Biotechnol 23:400–407Google Scholar
  42. Kawai F (2002) Microbial degradation of polyethers. Appl Microbiol Biotechnol 58:30–38Google Scholar
  43. Kawai F (2010a) Polylactic acid (PLA)-degrading micoorganisms and PLA depolymerases. In: Gross RA, Chen HN (eds) Green polymer chemistry: biocatalysts and biomaterials. American Chemical Society, USA, pp 405–414Google Scholar
  44. Kawai F (2010b) The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. Biosci Biotechnol Biochem 74:1743–1759Google Scholar
  45. Kawai F, Hayashi T (2002) Biodegradation of polyacrylate. In: Matsumura S, Steinbüchel A (eds) Biopolymers, vol 9. Wiley-VCH, Germany, pp 299–321Google Scholar
  46. Kawai F, Hu X (2009) Biochemistry of microbial polyvinyl alcohol degradation. Appl Microbiol Biotechnol 84:227–237Google Scholar
  47. Kawai F, Moriya F (1991) Bacterial assimilation of polytetramethylene glycol. J Ferment Bioeng 71:1–5Google Scholar
  48. Kawai F, Yamanaka H (1986) Biodegradation of polyethylene glycol by symbiotic mixed culture (obligate mutualism). Arch Microbiol 146:125–129Google Scholar
  49. Kawai F, Hanada K, Tani Y, Ogata K (1977) Bacterial degradation of water-insoluble polymer (polypropylene glycol). J Ferment Technol 55:89–96Google Scholar
  50. Kawai F, Okamoto T, Suzuki T (1985) Aerobic degradation of polypropylene glycol by Corynebacterium sp. J Ferment Technol 68:239–244Google Scholar
  51. Kawai F, Igarashi K, Kasuya F, Fukui M (1994) Proposed mechanism for bacterial metabolism of polyacrylate. J Environ Polym Degrad 2:59–65Google Scholar
  52. Kawai F, Shibata M, Yokoyama S, Maeda S, Tada K, Hayashi S (1999) Biodegradability of Scott–Gelead photodegradable polyethylene and polyethylene wax by microorganisms. Macromol Symp 144:85–99Google Scholar
  53. Kawashima Y, Ohki T, Shibata N, Higuchi Y, Wakitani Y, Matsuura Y, Nakata Y, Takeo M, Kato D, Negoro S (2009) Moleccular design of a nylon-6 byproduct-degrading enzyme from a carboxylesterase with a ?-lactamase fold. FEBS J 276:2547–2556Google Scholar
  54. Kinoshita S, Kageyama S, Iba K, Yamada Y, Okada H (1975) Utilization of a cyclic dimer and linear oligomers of ?-aminocaproic acid by Achromobacter guttatus KI71. Agric Biol Chem 39:1219–1223Google Scholar
  55. Kinoshita S, Negoro S, Muramatsu M, Bisaria VS, Sawada S, Okada H (1977) 6-Aminohexanoic acid cyclic dimer hydrolase: a new cyclic amide hydrolase produced by Achromobacter guttatus KI72. Europe J Biochem 80:489–490Google Scholar
  56. Kinoshita S, Terada T, Tanigucchi T, Takene Y, Masda S, Matsunaga N, Okada H (1981) Purification and characterization of 6-aminohexanoic-acid-oligomer hydrolase of Flavobacerium sp. KI71. Europe J Biochem 116:547–551Google Scholar
  57. Kleeberg I, Welzel K, VandenHeuvel J, Müller R-J, Deckwer W-D (2005) Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters. Biomacromolecules 6:262–270Google Scholar
  58. Klomklang W, Tani A, Kimbara K, Mamoto R, Ueda T, Shimao M, Kawai F (2005) Biochemical and molecular characterization of a periplasmic hydrolase for oxidized polyvinyl alcohol from Sphingomonas sp. strain 113P3. Microbiology 151:1255–1262Google Scholar
  59. Kohlweyer U, Thiemer B, Schraeder T, Andreesen JR (2000) Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1 FEMS. Microbiol Lett 186:301–306Google Scholar
  60. Larking DM, Crawford RJ, Christie GBY, Linergan GT (1999) Enhanced degradation of polyvinyl alcohol by Pycnoporus cinabarinus after pretreatment with Fenton’s reagent. Appl Environ Microbiol 65:1798–1800Google Scholar
  61. Larson RJ, Bookland EA, Williams RT, Yocom KM, Saucy DA, Freeman MB, Swift G (1997) Biodegradation of acrylic acid polymers and oligomers by mixed microbial communities in activated sludge. J Environ Polym Degrad 5:41–48Google Scholar
  62. Mamoto R, Hu X, Chiue H, Fujioka Y, Kawai F (2008) Cloning and expression of soluble cytochrome c and its role in polyvinyl alcohol degradation by polyvinyl alcohol-utilizing Sphingopyxis sp. strain 113P3. J Biosci Bioeng 105:147–151Google Scholar
  63. Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other bioderadable plastics. Appl Environ Microbiol 71:7548–7550Google Scholar
  64. Matsuda E, Abe N, Tamakawa H, Kaneko J, Kamio Y (2005) Gene cloning and molecular characterization of an extracellular poly(l-lactic acid) depolymerae from Amycolatopsis sp. strain K104–1. J Bacteriol 187:7333–7340Google Scholar
  65. Matsumura S (2002) Biodegradation of poly(vinyl alcohol) and its copolymers. In: Matsumura S, Steinbüchel A (eds) Biopolymers, vol 9. Wiley-VCH, Germany, pp 329–361Google Scholar
  66. Matsumura S, Maeda S, Takahashi J, Yoshikawa S (1988) Biodegradation of poly(vinyl alcohol) and poly(sodium acrylate)-co-(vinyl alcohol). Kobunshi Ronbunshu 45:317–324Google Scholar
  67. Matsumura S, Kurita H, Shimokobe H (1993) Anaerobic biodegradability of polyvinyl alcohol. Biotechnol Lett 15:749–754Google Scholar
  68. Mayumi D, Shigeno Y, Uchiyama H, Nomura N, Nakajima KT (2008) Identification and characterization of novel poly(dl-lactic acid) depolymerases from metagenome. Appl Microbiol Biotechnol 79:743–750Google Scholar
  69. Mejia AI, Lucy Lopez BL, Mulet A (1999) Biodegradation of poly(vinyl alcohol) with enzymatic extracts of Phaenerochaete chrysosporium. Macromol Symp 148:131–147Google Scholar
  70. Müller R, Kleeberg I, Deckwer W (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95Google Scholar
  71. Müller R-J, Schrader H, Profe J, Dresler K, Deckwer W-D (2005) Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun 6:1400–1405Google Scholar
  72. Nagarajan V, Singh M, Kane H, Khalili M, Bramucci M (2006) Degradation of a terephthalate-containing polyester by a thermophilic microbial consortium. J Polym Environ 14:281–287Google Scholar
  73. Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(l-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104–1. Appl Environ Microbiol 67:345–353Google Scholar
  74. Negoro S (2000) Biodegradation of nylon oligomers. Appl Microbiol Biotechonol 54:461–466Google Scholar
  75. Negoro S, Kakudo S, Urabe I, Okada H (1992) A new nylon oligomer degradation gene (nylC) on plasmid pOAD2 from Flavobacterium sp. J Bacteriol 174:7948–7953Google Scholar
  76. Nishikawa M, Ogawa K (2004) Antimicrobial activity of a chelatable poly(arginyl-histidine) produced by the ergot fungus Verticillium kibiense. Antimicrob Agents Chemother 48:229–235Google Scholar
  77. Nord FF (1936) Dehydrogenation ability of Fusarium lini B. Naturwissenschaften 24:793Google Scholar
  78. Obradors N, Aguilar J (1975) Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl Environ Microbiol 57:2383–2388Google Scholar
  79. Obst M, Steinbüchel A (2004) Microbial degradation of poly(amino acid)s. Biomacromolecules 5:1166–1176Google Scholar
  80. Ogata K, Kawai F, Fukaya M, Tani Y (1975) Isolation of polyethylene glycols-assimilable bacteria. J Ferment Technol 53:757–761Google Scholar
  81. Ohta T, Tani A, Kimbara K, Kawai F (2005) A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation. Appl Microbiol Biotechnol 68:639–646Google Scholar
  82. Ohta T, Kawabara T, Nishikawa K, Tani A, Kimbara K, Kawai F (2006) Analysis of amino acid residues involved in catalysis of polyethylene glycol dehydrogenase from Sphingopyxis terrae, using three-dimensional molecular modeling-based kinetic characterization of mutants. Appl Environ Microbiol 72:4388–4396Google Scholar
  83. Ornek D, Jayaraman A, Syrett BC, Hsu C-H, Mansfeld FB, Wood TK (2002) Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or ?-polyglutamate. Appl Microbiol Biotechnol 58:651–657Google Scholar
  84. Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J Appl Pol Sci 56:1789–1796Google Scholar
  85. Payne WJ (1963) Pure culture studies of the degradation of detergent compounds. Biotechnol Bioeng 5:355–365Google Scholar
  86. Potts JE, Clendinning RA, Achart WBA, Niegishi WD (1973) The biodegradability of synthetic polymers. Polym Sci Technol 3:61–79Google Scholar
  87. Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol 63:1637–1640Google Scholar
  88. Pranamuda H, Tsuchii A, Tokiwa T (2001) Poly(l-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol Biosci 1:25–29Google Scholar
  89. Prijambada ID, Negoro S, Yomo T, Urabe I (1995) Emergence of nylon ligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution. Appl Environ Microbiol 61:2020–2022Google Scholar
  90. Qian D, Du G, Chen J (2004) Isolation and culture characterization of a new polyvinyl alcohol-degrading strain; Penicillium sp. WSH02–21. World J Microbiol Biotechnol 20:587–591Google Scholar
  91. Reeve MS, McCarthy SP, Downew MJ, Gross RA (1994) Polylactide stereochemistry: effect on enzymatic degradability. Macromolecules 72:825–831Google Scholar
  92. Rittmann BE, Benjamin H, Odencrantz JE, Sutfin JA (1992a) Biological fate of a polydisperse acrylate polymer in anaerobic sand-medium transport. Biodegradation 2:171–179Google Scholar
  93. Rittmann BE, Sutfin JA, Benjamin H (1992b) Biodegradation and sorption properties of polydisperse acrylate polymers. Biodegradation 2:181–190Google Scholar
  94. Ronkvis AM, Xie X, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138Google Scholar
  95. Roy AB, Curtis CG, Powell GM (1987) The metabolic sulphation of polyethylene glycols by isolated perfused rat and guinea-pig livers. Xenobiotica 17:725–732Google Scholar
  96. Rusenko KW, Donachy JE, Weler AP (1991) Purification and characterization of a shell matrix phosphoprotein from the American oyster. In: Sikes CS, Wheeler AP (eds) Surface reactive peptides and polymers: discovery and commercialization. American Chemical Society, USA, pp 107–121Google Scholar
  97. Schink B, Stieb M (1983) Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium. Appl Environ Microbiol 45:1905–1913Google Scholar
  98. Schmid RD, Verger R (1988) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37:1608–1633Google Scholar
  99. Scott G (1975) Biological recycling of polymers. Polym Age 6:54–56Google Scholar
  100. Scott G, Gilead D (1978) British Patent 1, 586, 344Google Scholar
  101. Soeda Y, Toshima K, Matsumura S (2003) Sustainable enzymatic preparation of polyaspartate using a bacterial protease. Biomacromolecules 4:196–203Google Scholar
  102. Somyoonsap P, Tani A, Charoenpanich J, Minami T, Kimbara K, Kawai F (2008) Invovement of PEG-carboxylate dehydrogenase and glutathione S-transferase in PEG metabolism by Sphingoyxis macrogoltabida strain 103. Appl Microbiol Biotechnol 81:473–484Google Scholar
  103. Speranza G, Mueller B, Orlandi M, Morelli CF, Manitto P, Schink B (2002) Mechanism of anaerobi ether leavage; conversion of 2-phenoxyethanol to phenol and acetaldehyde by Acetobacterium sp. J Biol Chem 277:11684–11690Google Scholar
  104. Strass A, Schink B (1986) Fermentation of polyethylene glcol via acetaldehyde in Pelobacter venetianus. Appl Microbiol Biotechnol 25:37–42Google Scholar
  105. Sugimoto M, Tanabe M, Hataya M, Enokibara S, Duine JA, Kawai F (2001) The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J Bacteriol 183:6694–6698Google Scholar
  106. Suzuki T, Ichihara Y, Yamada M, Tonomura K (1973) Some characteristics of Pseudomonas O-3 which utilizes polyvinyl alcohol. Agric Biol Chem 37:747–756Google Scholar
  107. Tabata K, Abe H, Doi Y (2000) Microbial degradation of poly(aspartic acid) by two isolated strains of Pedobacter sp. and Sphingomonas sp. Biomacromolecules 1:157–161Google Scholar
  108. Tabata K, Kajiyama M, Hiraishi T, Abe H, Doi Y (2001) Purification and characterization of poly(aspartic acid) hydrolase from Sphingomonas sp. KT-1. Biomacromolecules 2:1155–1160Google Scholar
  109. Tachibana S, Kawai F, Yasuda M (2002) Heterogeneity of dehyrrogenases of Stenotrophomonas maltophilia showing dye-linked activity with polypropylene glydols. Biosci Biotechnol Biochem 66:737–742Google Scholar
  110. Tachibana S, Kuba N, Kawai F, Duine JA, Yasuda M (2003) Invovement of a quinoprotein (PQQ-containing) alcohol dehydrogenase in the degrdation of polypropylene glycols by the bacterium Stenotrophomonas maltophilia. FEMS Microbiol Lett 218:345–349Google Scholar
  111. Tachibana S, Naka N, Kawai F, Yasuda M (2008) Purification and characterization of cytoplasmic NAD+-dependent polypropylene glycol dehydrogenase from Stenotrohomonas maltophilia. FEMS Microbiol Lett 288:266–272Google Scholar
  112. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genra, Sphingobium, Novosphingobium and Spingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417Google Scholar
  113. Tani A, Charoenpanich J, Mori T, Takeuchi M, Kimbara K, Kawai F (2007) Structure and conservation of a polyethylene glycol-degradative operon in sphingomonads. Microbiology 153:338–346Google Scholar
  114. Tani A, Somyoonsap P, Minami T, Kimbara K, Kawai F (2008) Polyethylene glycol (PEG)-carboxylate-CoA synthetase is involved in PEG metabolism in Sphingopyxis macrogoltabida strain 103. Arch Microbiol 189:407–410Google Scholar
  115. Tokiwa Y, Calabia BP (2004) Degradation of microbial polyesters. Biotechnol Lett 26:1181–1189Google Scholar
  116. Tokiwa Y, Calabia BP (2006) Biodegradability an biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251Google Scholar
  117. Tokiwa Y, Jarerat A (2004) Biodegradation of poly(l-lactide). Biotechnol Lett 26:771–777Google Scholar
  118. Tokiwa Y, Jarerat A, Tsuchiya A (2003) Japanese Patent 2003-61676, 4 March 2003Google Scholar
  119. Tomita K, Ideda N, Ueno A (2003a) Isolation and characterization of a thermophilic bacterium, Geobacillus thermocatenulatus, degrading nylon 12 and nylon 66. Biotechnol Lett 25:1743–1746Google Scholar
  120. Tomita K, Tsuji T, Nakajima H, Kikuchi Y, Ikarashi K, Ikeda N (2003b) Degradation of poly(d-lactic acid) by a thermophile. Polym Degrad Stab 81:167–171Google Scholar
  121. Watanabe Y, Moria M, Hamada N, Tsujisaka Y (1975) Formation of hydrogen peroxide by a polyvinyl alcohol degrading enzyme. Agric Biol Chem 39:2447–2448Google Scholar
  122. Williams DF (1981) Enzymatic hydrolysis of polylactic acid. Eng Med 10:5–7Google Scholar
  123. Yamanaka H, Kawai F (1991) Purification and characterization of a glycolic acid (GA) oxidase active toward diglycolic acid (DGA) produced by DGA-utilizing Rhodococcus sp. no. 431. J Ferment Bioeng 71:83–88Google Scholar
  124. Yasuhira K, Tanaka Y, Shibata H, Kawashima Y, Ohara A, Kato D, Takeo M, Negoro S (2007a) 6-Aminohexanoate oligomer hydrolases from the alkanophilic bacteria Agromyces sp. strain KY5R and Kocuria sp. strain KY2. Appl Environ Microbiol 73:7099–7102Google Scholar
  125. Yasuhira K, Uedo Y, Takeo M, Kato D, Negoro S (2007b) Genetic organization of nylon-oligomer-degrading enzymes from alkalophilic bacterium, Agromyces sp. KY5R. J Biosci Bioeng 104:521–524Google Scholar
  126. Zamocky M, Hallberg M, Ludwig R, Divne C, Haltrich D (2004) Ancestal gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Gene 338:1–14Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Center for Nanomaterials and DevicesKyoto Institute of TechnologyKyotoJapan

Personalised recommendations