Skip to main content

Microbial Degradation of Recalcitrant PAHs-Microbial Diversity Involving Remediation Process

  • Chapter
  • First Online:
Microbial Degradation of Xenobiotics

Abstract

Domestic pollutants, largely due to population explosion and industrial inputs lead to the accumulation of various types of recalcitrant xenobiotic compounds (Hadibarata et al. 2009; Igwo-Ezikpe et al. 2010). As majority of them persist for longer period of time and are carcinogenic in nature, their disposal is a matter of global concern (Jain et al. 2005). Primarily, xenobiotic compounds are anonymous to living organisms and also have a tendency to get accumulated in the environment (Sinha et al. 2009). They encompass pesticides, fuels, solvents, alkanes, synthetic azo dyes, polyaromatic, nitroaromatic, chlorinated and polycyclic hydrocarbons. Amongst them, the presence of polycyclic aromatic hydrocarbons (PAHs) in the environment causes acute health hazard with their intrinsic chemical stability, high recalcitrance ability against different types of degradation and high toxicity to living organisms for their mutagenic or carcinogenic properties (Zhang et al. 2006). Apart from it, they are ubiquitous and prevail as persistent bioaccumulative toxins (PBT) (NiChadhain et al. 2006). For instance, phenanthrene, a lipophilic and relatively insoluble in water, is skin photosensitizer and mild allergenic to human (Hafez et al. 2008). It is also found as an inducer of the sister chromatid exchange process (Popp et al. 1997) and a potent inhibitor of gap-junction intercellular communications (Bláha et al. 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaens P, Vogel TM (1995) Biological treatment of chlorinated organics. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 435–486

    Google Scholar 

  • Basta T, Buerger S, Stolz A (2005) Structural and replicative diversity of large plasmids from sphingomonads that degrade polycyclic aromatic compounds and xenobiotics. Microbiology 151:2025–2037

    Article  CAS  Google Scholar 

  • Bedessem ME, Swoboda-Colberg NG, Colberg PJS (1997) Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments. FEMS Microbiol Lett 152:213–218

    Article  CAS  Google Scholar 

  • Bláha L, Kapplová P, Vondrá?ek J, Upham B, Machala M (2002) Inhibition of gap-junctional intercellular communication by environmentally occurring polycyclic aromatic hydrocarbons. Toxicol Sci 65:43–51

    Article  Google Scholar 

  • Bosch R, García-Valdés E, Moore ERB (1999) Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236:149–157

    Article  CAS  Google Scholar 

  • Bosch R, García-Valdés E, Moore ERB (2000) Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene 245:65–74

    Article  CAS  Google Scholar 

  • Boyd DR, Sharma ND, Hempenstal F, Kennedy MA, Malone JF, Allen CCR, Rensnick SM, Gibson DT (1999) Bis-cis-dihydrodiols: a new class of metabolites from biphenyl dioxygenase-catalyzed sequential asymmetric cis-dihydroxylation of polycyclic arenas and heteroarenes. J Org Chem 64:4005–4011

    Article  CAS  Google Scholar 

  • Caldini G, Cenci G, Manenti R, Morozzi G (1995) The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. J Appl Microbiol Biotechnol 44:225–229

    Article  CAS  Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Chang W, Um Y, Hoffman B, Holoman TCR (2005) Molecular characterization of polycyclic aromatic hydrocarbon (PAH) degrading methanogenic communities. Biotechnol Prog 21:682–688

    Article  CAS  Google Scholar 

  • Chauhan A, Faziur R, Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. J Ind Microbiol 48:95–113

    Article  CAS  Google Scholar 

  • Chen SH, Aitken MD (1999) Salicylate stimulates the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33:435–439

    Article  CAS  Google Scholar 

  • Cho JC, Kim SJ (2001) Detection of mega plasmid from polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. strain KS14. J Mol Microbiol Biotechnol 3:503–506

    CAS  Google Scholar 

  • Chowdhury A, Pradhan S, Saha M, Sanyal N (2008) Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. J Ind Microbiol 48:114–127

    Article  CAS  Google Scholar 

  • Dennis JJ, Zylstra GJ (2004) Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J Mol Biol 341:753–768

    Article  CAS  Google Scholar 

  • Dhote M, Juwarkar A, Kumar A, Kanade GS, Chakrabarti T (2010) Biodegradation of chrysene by the bacterial strains isolated from oily sludge. World J Microbiol Biotechnol 26:329–335

    Article  CAS  Google Scholar 

  • Diaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Ind Microbiol 7:173–180

    CAS  Google Scholar 

  • Dunn NW, Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979

    CAS  Google Scholar 

  • Evans WC, Fernley HN, Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudonads. Biochem J 95:819–831

    CAS  Google Scholar 

  • Fetzer JC (2000) The chemistry and analysis of the large polycyclic aromatic hydrocarbons. In: Fetzer JC (ed) Polycyclic aromatic compounds. Wiley, New York, pp 27–143

    Google Scholar 

  • Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Ann Rev Microbiol 56:345–369

    Article  CAS  Google Scholar 

  • Hadibarata T, Tachibana S, Itoh K (2009) Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J Hazard Mater 164:911–917

    Article  CAS  Google Scholar 

  • Hafez EE, Rashad M, Abd-Elsalam HE, Hanafy AA (2008) The polyaromatic hydrocarbons as a serious environmental pollutants and the role of bioremediation to overcome this problem. In: Basu SK, Datta BS (eds) Environment, health and nutrition—global issues. APH Publishing Corporation, New Delhi

    Google Scholar 

  • Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614

    CAS  Google Scholar 

  • Hilyard EJ, Jones-Meehan JM, Spargo BJ, Hill RT (2008) Enrichment, isolation, and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth river sediments. Appl Environ Microbiol 74:1176–1182

    Article  CAS  Google Scholar 

  • Hinchee RE, Leeson A, Ong SK, Semprini L (1994) Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds. Lewis Publishers, London

    Google Scholar 

  • Igwo-Ezikpe MN, Gbenle OG, Ilori MO (2006) Growth study on chrysene degraders isolated from polycyclic aromatic hydrocarbon polluted soils in Nigeria. Afr J Biotechnol 5:823–828

    Google Scholar 

  • Igwo-Ezikpe MN, Gbenle OG, Ilori MO, Okpuzor J, Osuntoki AA (2010) High molecular weight polycyclic aromatic hydrocarbons biodegradation by bacteria isolated from contaminated soils in Nigeria. Res J Environ Sci 4:127–137

    Article  CAS  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of micro-organisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  • Johnsen AR, Wickb JY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[?]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Kanaly RA, Bartha R, Watanabe K, Harayama S (2000a) Rapid mineralization of benzo[?]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66:4205–4211

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S, Watanabe K (2000b) Biodegradation of high molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  CAS  Google Scholar 

  • Karthikeyan R, Bhandari A (2001) Anaerobic biotransformation of aromatic and polycyclic aromatic hydrocarbons in soil microcosms: a review. J Hazard Subst Res 3:1–19

    Google Scholar 

  • Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence and expression of genes encoding a polycyclic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:3577–3585

    Article  CAS  Google Scholar 

  • Kim JD, Shim SH, Lee CG (2005a) Degradation of phenanthrene by bacterial strains isolated from soil in oil refinery fields in Korea. J Microbiol Biotechnol 15:337–345

    CAS  Google Scholar 

  • Kim YH, Freeman JP, Moody JD, Engesser KH, Cerniglia CE (2005b) Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 67:275–285

    Article  CAS  Google Scholar 

  • Kim SJ, Kweon O, Jones RC, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on system biology. J Bacteriol 189:464–472

    Article  CAS  Google Scholar 

  • Kim SJ, Kweon O, Jones RC, Edmondson RD, Cerniglia CE (2008) Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 19:259–881

    Article  Google Scholar 

  • Kumar G, Singla R, Kumar R (2010) Plasmid associated anthracene degradation by Pseudomonas sp isolated from filling station site. Nat Sci 8:89–94

    Google Scholar 

  • Liang Y, Gardener D, Miller CD, Chen D, Anderson AJ, Weimer BC, Sims RC (2006) Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl Environ Microbiol 72:7821–7828

    Article  CAS  Google Scholar 

  • Liu SL, Luo YM, Cao ZH, Wu LH, Ding KQ, Christie P (2004) Degradation of benzo[?]pyrene in soil with arbuscular mycorrhizal alfalfa. Environ Geochem Health 26:285–293

    Article  CAS  Google Scholar 

  • Lloyd-Jones G, Laurie AD, Hunter DWF, Fraser R (1999) Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiol Ecol 29:69–79

    Article  CAS  Google Scholar 

  • Luch A (2005) The carcinogenic effects of polycyclic aromatic hydrocarbons. Imperial College Press, London

    Book  Google Scholar 

  • Ma Y, Wang L, Shao Z (2006) Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8:455–465

    Article  CAS  Google Scholar 

  • Mallick S, Chatterjee S, Dutta TK (2007) A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2?-hydroxyphenyl)-pent-4-enoic acid. Microbiology 153:2104–2115

    Article  CAS  Google Scholar 

  • Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulfate reducing enrichment culture. Appl Environ Microbiol 66:2743–2747

    Article  CAS  Google Scholar 

  • Mishra V, Lal R, Srinivasan C (2001) Enzymes and operons mediating xenobiotic degradation in bacteria. Crit Rev Microbiol 27:133–166

    Article  CAS  Google Scholar 

  • Mrojik A, Piotrowska-Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Pol J Environ Stud 12:15–25

    Google Scholar 

  • NiChadhain SM, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ (2006) Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol 72:4078–4087

    Article  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  Google Scholar 

  • Pfeifer A, Mark G, Leung S, Dougherty M, Spillare E, Kasid U (1998) Effects of c-raf-1 and c-myc expression on radiation response in an in vitro model of human small-cell-lung carcinoma. Biochem Biophys Res Commun 252:481–486

    Article  CAS  Google Scholar 

  • Phale PS, Basu A, Majhi PD, Deveryshetty J, Vamsee-Krishna C, Shrivastava R (2007) Metabolic diversity in bacterial degradation of aromatic compounds OMICS. J Integr Biol 11:252–279

    CAS  Google Scholar 

  • Popp W, Vahrenholz C, Schell C, Grimmer G, Dettbarn G, Kraus R, Brauksiepe A, Schmeling B, Gutzeit T, Von-Bülow T, Norpoth K (1997) DNA single strand breakage, DNA adducts, and sister chromatid exchange in lymphocytes and phenanthrene and pyrene metabolites in urine of coke oven workers. Occup Environ Med 54:176–183

    Article  CAS  Google Scholar 

  • Sarma PM, Duraja P, Deshpande S, Lal B (2010) Degradation of pyrene by an enteric bacterium, Leclercia adecarboxylata PS4040. Biodegradation 21:59–69

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Microbiol 14:303–310

    CAS  Google Scholar 

  • Schneegurt-Mark A, Kulpa-Charler FJR (1998) The application of molecular techniques in environmental biotechnology for monitoring microbial systems. Biotechnol Appl Biochem 27:73–79

    Article  Google Scholar 

  • Sheng XF, He LY, Zhou L, Shen YY (2009) Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil. Can J Microbiol 55:529–535

    Article  CAS  Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Ind J Microbiol 48:35–40

    Article  Google Scholar 

  • Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P, Bandyopadhyay D, Das K, Sen SK (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8:6016–6027

    CAS  Google Scholar 

  • Smith JR, Nakles DV, Sherman DF, Neuhauser EF, Loehr RC (1989) Environmental fate mechanisms influencing biological degradation of coal-tar derived poly-nuclear-aromatic-hydrocarbons in soil system. In: Proceeding of 3rd international conference on new frontiers for hazardous waste management, US Environmental Protection Agency, Washington DC, pp 397–405

    Google Scholar 

  • Taranenko NI, Hurt R, Zhou J, Isola NR, Huang H, Lee SH, Chen CH (2002) Laser desorption mass spectrometry for microbial DNA analysis. J Microbiol Method 48:101–106

    Article  CAS  Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676

    Article  CAS  Google Scholar 

  • Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharm 206:73–93

    Article  CAS  Google Scholar 

  • Zhang XX, Cheng SP, Zhu CJ, Sun SL (2006) Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere 16:555–565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Department of Botany (DST-FIST and UGC-DRS sponsored), Visva-Bharati, for necessary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta K. Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sinha, S., Chattopadhyay, P., Sen, S.K. (2012). Microbial Degradation of Recalcitrant PAHs-Microbial Diversity Involving Remediation Process. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_15

Download citation

Publish with us

Policies and ethics