Polyurethane Biodegradation

  • Gary T. Howard
Part of the Environmental Science and Engineering book series (ESE)


Polyurethanes represent a class of polymers that have found a widespread use in the medical, automotive and industrial fields. Polyurethanes can be found in products such as furniture, coatings, adhesives, constructional materials, fibers, paddings, paints, elastomers and synthetic skins. Polyurethane is abbreviated as PUR in compliance with official German and International standards. However, the abbreviation PU is more commonly used in English texts.


Hard Segment Predicted Amino Acid Sequence Urethane Group Human Neutrophil Elastase Cholesterol Esterase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahn JH, Pan JG, Rhee JS (1999) Identification of the tliDEF ABC transporter specific for lipase in Pseudomonas fluorescens SIK W1. J Bacteriol 181:1847–1852Google Scholar
  2. Akatsuka H, Kawai E, Omori K, Shibatani T (1995) The three genes lipB, lipC, and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide. J Bacteriol 177:6381–6389Google Scholar
  3. Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T (1998) Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol 64:62–67Google Scholar
  4. Allen A, Hilliard N, Howard GT (1999) Purification and characterization of a soluble polyurethane degrading enzyme from Comamonos acidovorans. Int Biodeter Biodegrad 43:37–41CrossRefGoogle Scholar
  5. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183CrossRefGoogle Scholar
  6. Baumgartner JN, Yang CZ, Cooper SL (1997) Physical property analysis and bacterial adhesion on a series of phosphonated polyurethanes. Biomaterials 18:831–837CrossRefGoogle Scholar
  7. Bayer O (1947) Polyurethanes. Mod Plast 24:149–152Google Scholar
  8. Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552–559Google Scholar
  9. Blake RC, Howard GT (1998) Adhesion and growth of a Bacillus sp on a polyesterurethane. Int Biodeter Biodegrad 42:63–73CrossRefGoogle Scholar
  10. Boubendir A (1993) Purification and biochemical evaluation of polyurethane degrading enzymes of fungal origin. Diss Abstr Int 53:4632Google Scholar
  11. Cosgrove L, McGeechan PL, Robson GD, Handley PS (2007) Fungal communities associated with degradation of polyester polyurethane in soil. Appl Environ Microbiol 73:5817–5824CrossRefGoogle Scholar
  12. Cosgrove L, McGeechan PL, Handley PS, Robson GD (2010) Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil. Appl Environ Microbiol 76:810–819CrossRefGoogle Scholar
  13. Crabbe JR, Campbell JR, Thompson L, Walz SL, Schultz WW (1994) Biodegradation of a collodial ester-based polyurethane by soil fungi. Int Biodeter Biodegrad 33:103–113CrossRefGoogle Scholar
  14. Darby RT, Kaplan AM (1968) Fungal susceptibility of polyurethanes. Appl Microbiol 16:900–905Google Scholar
  15. Dombrow BA (1957) Polyurethanes. Reinhold Publishing Corporation, New YorkGoogle Scholar
  16. Doung F, Soscia C, Lazdunski A, Marjier M (1994) The Pseudomonas fluorescens lipase has a C-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system. Mol Microbiol 11:1117–1126CrossRefGoogle Scholar
  17. Evans DM, Levisohn I (1968) Biodeterioration of polyester-based polyurethane. Int Biodeter Bull 4:89–92Google Scholar
  18. Flilip Z (1978) Decomposition of polyurethane in a garabage landfill leakage water and by soil microorganisms. Eur J Appl Microbiol Biotechnol 5:225–231CrossRefGoogle Scholar
  19. Fried JR (1995) Polymer Science and Technology. Prentice Hall PTR, Englewood CliffsGoogle Scholar
  20. Fukui T, Narikawa T, Miwa K, Shirakura Y, Saito T, Tomita K (1988) Effect of limited trypic modifications of a bacterial poly(3-hydroxybutyrate) depolymerase on its catalytic activity. Biochimica Biophysica ACTA 952:164–171CrossRefGoogle Scholar
  21. Gautam R, Bassi AS, Yanful EK, Cullen E (2007) Biodegradation of automotive waste polyester polyurethane foam using Pseudomonas chlororaphis ATCC55729. Int Biodeter Biodegrad 60:245–249CrossRefGoogle Scholar
  22. Griffin GJL (1980) Synthetic polymers and the living environment. Pure Appl Chem 52:389–407CrossRefGoogle Scholar
  23. Halim El-Sayed AHMM, Mahmoud WM, Davis EM, Coughlin RW (1996) Biodegradation of polyurethane coatings by hydrocarbon-degrading bacteria. Int Biodeter Biodegrad 37:69–79CrossRefGoogle Scholar
  24. Hansen CK (1992) Fibronectin type III-like sequences and a new domain type in prokaryotic depolymerases with insoluble substrates. FEBS Lett 305:91–96CrossRefGoogle Scholar
  25. Hole LG (1972) Artificial leathers. Rep Prog Appl Chem 57:181–206Google Scholar
  26. Howard GT, Blake RC (1999) Growth of Pseudomonas fluorescens on a polyester-polyurethane and the purification and characterization of a polyurethanase-protease enzyme. Int Biodeter Biodegrad 42:213–220CrossRefGoogle Scholar
  27. Howard GT, Crother B, Vicknair J (2001) Cloning, nucleotide sequencing and characterization of a polyurethanase gene (pueB) from Pseudomonas chlororaphis. Int Biodeter Biodegrad 47:141–149CrossRefGoogle Scholar
  28. Howard GT, Mackie RI, Cann IKO, Ohene-Adjei S, Aboudehen KS, Duos BG, Childers GW (2007) Effect of insertional mutations in the pueA and pueB genes encoding two polyurethanases in Pseudomonas chlororaphis contained within a gene cluster. J Appl Microbiol 103:2074–2083CrossRefGoogle Scholar
  29. Huang SJ, Roby MS (1986) Biodegradable polymers poly(amide-urethanes). J Bioact Compat Polym 1:61–71CrossRefGoogle Scholar
  30. Huang SJ, Macri C, Roby M, Benedict C, Cameron JA (1981) Biodegradation of polyurethanes derived from polycaprolactonediols. In: Edwards KN (ed) Urethane chemistry and applications. American Chemical Society, Washington, DC, pp 471–487CrossRefGoogle Scholar
  31. Jaeger KE, Ransac S, Dijkstra BW, Colson C, Van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63CrossRefGoogle Scholar
  32. Kanavel GA, Koons PA, Lauer RE (1966) Fungus resistance of millable urethanes. Rubber World 154:80–86Google Scholar
  33. Kaplan AM, Darby RT, Greenberger M, Rodgers MR (1968) Microbial deterioration of polyurethane systems. Dev Ind Microbiol 82:362–371Google Scholar
  34. Kawai F (1995) Breakdown of plastics and polymers by microorganisms. Adv Biochem Eng/Biotech 52:151–194Google Scholar
  35. Kawai E, Akatsuka H, Idei A, Shibatani T, Omori K (1998) Serratia marcescens S-layer protein is secreted extracellularly via an ATP-binding cassette exporter, the Lip system. Mol Microbiol 27:941–952CrossRefGoogle Scholar
  36. Kawai E, Idei A, Kumura H, Shimazaki K, Akaksuka H, Omori K (1999) The ABC-exporter genes involved in the lipase secretion are clustered with the genes for lipase, alkaline protease and serine protease homologous in Pseudomonas fluorescens no. 33. Biochim Biophys Acta 1446(3):377–382CrossRefGoogle Scholar
  37. Kay MJ, Morton LHG, Prince EL (1991) Bacterial degradation of polyester polyurethane. Int Biodeter Bull 27:205–222CrossRefGoogle Scholar
  38. Kay MJ, McCabe RW, Morton LHG (1993) Chemical and physical changes occurring in polester polyurethane during biodegradation. Int Biodeter Biodegrad 31:209–225CrossRefGoogle Scholar
  39. Knowles J, Lehtovaara P, Teeri T (1987) Cellulase familes and their genes. Trends Biotechnol 5:255–261CrossRefGoogle Scholar
  40. Labrow RS, Erfle DJ, Santerre JP (1996) Elastase-induced hydrolysis of synthetic solid substrates: poly(ester-urea-urethane) and poly(ether-urea-urethane). Biomaterials 17:2381–2388CrossRefGoogle Scholar
  41. Langsford ML, Gilkes NR, Sing S, Moser B, Miller RC Jr, Warren RAJ, Kilburn DG (1987) Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains. FEBS Lett 225:163–167CrossRefGoogle Scholar
  42. Marchant RE (1992) Biodegradability of biomedical polymers. In: Hamid SH, Amin MB, Maadhah AG (eds) Handbook of polymer degradation. Marcel Dekker, Inc, New York, pp 617–631Google Scholar
  43. Marchant RE, Zhao Q, Anderson JM, Hiltner A (1987) Degradation of a poly(ether urethane urea) elastomer: infra-red and XPS studies. Polymer 28:2032–2039CrossRefGoogle Scholar
  44. Nakajima-Kambe T, Onuma F, Kimpara N, Nakahara T (1995) Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiol Lett 129:39–42CrossRefGoogle Scholar
  45. Nakajima-Kambe T, Onuma F, Akutsu Y, Nakahara T (1997) Determination of the polyester polyurethane breakdown products and distribution of the polyurethane degrading enzyme of Comamonas acidovorans steain TB-35. J Ferment Bioeng 83:456–460CrossRefGoogle Scholar
  46. Ossefort ZT, Testroet FB (1966) Hydrolytic stability of urethane elastomers. Rubber Chem Technol 39:1308–1327CrossRefGoogle Scholar
  47. Pathirana RA, Seal KJ (1983) Gliocladium roseum (Bainier), a potential biodeteriogen of polyester polyurethane elastomers. Biodeterioration 5:679–689Google Scholar
  48. Persson B, Bentsson-Olivecrona G, Enerback S, Olivecrona T, Jornvall H (1989) Structure features of lipoprotein lipase: lipase family relationships, binding interactions, non-equivalence of lipase cofactors, vitellogenin similarities and functional subdivision of lipoprotein lipase. Eur J Biochem 179:39–45CrossRefGoogle Scholar
  49. Phua SK, Castillo E, Anderson JM, Hiltner A (1987) Biodegradation of a polyurethane in vitro. J Biomed Mater Res 21:231–246CrossRefGoogle Scholar
  50. Rowe L, Howard GT (2002) Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. Int Biodeter Biodegrad 50:33–40CrossRefGoogle Scholar
  51. Ruiz C, Hilliard N, Howard GT (1999a) Growth of Pseudomonas chlororaphis on a polyester-polyurethane and the purification and characterization of a polyurethanse-esterase enzyme. Int Biodeter Biodegrad 43:7–12CrossRefGoogle Scholar
  52. Ruiz C, Main T, Hilliard N, Howard GT (1999b) Purification and characterization of two polyurethanse enzymes from Pseudomonas chlororaphis. Int Biodeter Biodegrad 43:43–47CrossRefGoogle Scholar
  53. Santerre JP, Labrow RS (1997) The effect of hard segment size on the hydrolytic stability of polyether-urea-urethanes when exposed to cholesterol esterase. J Biomed Mater Res 36:223–232CrossRefGoogle Scholar
  54. Santerre JP, Labrow RS, Adams GA (1993) Enzyme-biomaterial interactions: effect of biosystem on degradation of polyurethanes. J Biomed Mater Res 27:97–109CrossRefGoogle Scholar
  55. Santerre JP, Labow RS, Duguat DG, Erfle D, Adams GA (1994) Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. J Biomed Mater Res 28:1187–1199CrossRefGoogle Scholar
  56. Saunders JH, Frisch KC (1964) Polyurethanes: chemistry and technology, part II: technology. Interscience Publishers, New YorkGoogle Scholar
  57. Schnabel W (1981) Polymer degradation: principles and potential applications. Macmillan Publishing Co. Inc, New York, pp 178–215Google Scholar
  58. Shinomiya M, Iwata T, Kasuya K, Doi Y (1997) Cloning of the gene for poly(3-hydroxybutyric acid) depolymerase of Comamonas testosteroni and functional analysis of its substrate-binding domain. FEMS Microbiol Lett 154:89–94CrossRefGoogle Scholar
  59. Stern RS, Howard GT (2000) The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase. FEMS Microbiol Lett 185:163–168CrossRefGoogle Scholar
  60. Tang YW, Santerre JP, Labrow RR, Taylor DG (1997) Application of macromolecular additives to reduce the hydrolytic degradation of polyurethanes by lysosomal enzymes. Biomaterials 18:37–45CrossRefGoogle Scholar
  61. Uhlig K (1999) Discovering polyurethanes. Hanser Publisher, MunichGoogle Scholar
  62. Ulrich H (1983) Polyurethane. In: Modern plastics encyclopedia, vol 60. McGraw-Hill, New York, pp 76–84Google Scholar
  63. Urbanski J, Czerwinski W, Janicka K, Majewska F, Zowall H (1977) Handbook of analysis of synthetic polymers and plastics. Ellis Horwood Limited, ChichesterGoogle Scholar
  64. Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhahai R, Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett 204:223–227CrossRefGoogle Scholar
  65. Vega R, Main T, Howard GT (1999) Cloning and expression in Escherichia coli of a polyurethane-degrading enzyme from Pseudomonas fluorescens. Int Biodeter Biodegrad 43:49–55CrossRefGoogle Scholar
  66. Wales DS, Sagar BR (1988) Mechanistic aspects of polyurethane biodeterioration. In: Houghton DR, Smith RN, Eggins HOW (eds) Biodeterioration, 7th edn. Elsevier Applied Science, London, pp 351–358Google Scholar
  67. Winkler FK, D’Arcy A, Hunzinger W (1990) Structure of human pancreatic lipase. Nature 343:7–13CrossRefGoogle Scholar
  68. Young RJ, Lovell PA (1994) Introduction to polymers’, 2nd edn. Chapman & Hall, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Department of Biological SciencesSoutheastern Louisiana UniversityHammondUSA

Personalised recommendations