Skip to main content

Biodegradation of Aromatic Pollutants by Ligninolytic Fungal Strains

  • Chapter
  • First Online:
Book cover Microbial Degradation of Xenobiotics

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

The environmental impact of organic aromatic pollutants mostly of anthropogenic origin is of increasing interest due to their persistency and often of serious effects on the environmental health. Many of these compounds represent industrial chemicals that were deliberately or inadvertently released into the environment. Others belong to undesired chemical by-products, personal care compounds or pharmaceuticals that resist against microbial or chemical processes, either during waste water treatment or in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebusoye SA, Picardal FW, Ilori MO, Amund OO (2008) Influence of chlorobenzoic acids on the growth and degradation potentials of PCB-degrading microorganisms. World J Microbiol Biotechnol 24:1203–1208

    CAS  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego

    Google Scholar 

  • Alleman BC, Logan BE, Gilbertson RL (1995) Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors. Water Res 29:61–67

    CAS  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783

    CAS  Google Scholar 

  • Baborova P, Moder M, Baldrian P, Cajthamlova K, Cajthaml T (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157:248–253

    CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Google Scholar 

  • Beaudette LA, Davies S, Fedorak PM, Ward OP, Pickard MA (1998) Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Environ Microbiol 64:2020–2025

    CAS  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996a) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559

    CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1996b) Mineralization of polycyclic aromatic hydrocarbons by the white-rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:292–295

    CAS  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996c) Metabolism of phenanthrene by the white-rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2547–2553

    CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white-rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501

    CAS  Google Scholar 

  • Bhatt M, Cajthaml T, Sasek V (2002) Mycoremediation of PAH-contaminated soil. Folia Microbiol 47:255–258

    CAS  Google Scholar 

  • Blanquez P, Guieysse B (2008) Continuous biodegradation of 17 beta-estradiol and 17 alpha-ethynylestradiol by Trametes versicolor. J Hazard Mater 150:459–462

    CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    CAS  Google Scholar 

  • Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP (2007a) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67:770–778

    CAS  Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2007b) Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: a review. Eng Life Sci 7:429–456

    CAS  Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2007c) Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. J Biotechnol 132:23–31

    CAS  Google Scholar 

  • Cajthaml T, Möder M, Ka?er P, Sasek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974:213–222

    CAS  Google Scholar 

  • Cajthaml T, Erbanova P, Vaclav S, Moeder M (2006) Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus. Chemosphere 64:560–564

    CAS  Google Scholar 

  • Cajthaml T, Erbanova P, Kollmann A, Novotny C, Sasek V (2008) Mougin C Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol 53:289–294

    CAS  Google Scholar 

  • Cajthaml T, Kresinova Z, Svobodova K, Sigler K, Rezanka T (2009a) Microbial transformation of synthetic estrogen 17 alpha-ethinylestradiol. Environ Pollut 157:3325–3335

    CAS  Google Scholar 

  • Cajthaml T, Kresinova Z, Svobodova K, Moeder M (2009b) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75:745–750

    CAS  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in natural degradation of lignin that has both Mn-peroxidase and lignin-peroxidase substrate binding sites. J Biol Chem 274:10324–10330

    CAS  Google Scholar 

  • Camarero S, Cañas AI, Nousiainen P, Record E, Lomascolo A, Martínez J, Martíneza T (2008) P-Hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ Sci Technol 42:6703–6709

    CAS  Google Scholar 

  • Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    Google Scholar 

  • Cañas AI, Alcalde M, Plou F, Martinez MJ, Martinez AT, Camarero S (2007) Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ Sci Technol 41:2964–2971

    Google Scholar 

  • Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb Technol 29:473–477

    CAS  Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    CAS  Google Scholar 

  • Chivukula M, Spadaro JT, Renganathan V (1995) Lignin peroxidase catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34:7765–7772

    CAS  Google Scholar 

  • Choudhary MI, Musharraf SG, Ali RA, Atif M, Atta UR (2004) Microbial transformation of antifertility agents, norethisterone and 17 alpha-ethynylestradiol. Zeitschrift fur Naturforschung Section B-A J Chem Sci 59:319–323

    CAS  Google Scholar 

  • Cloete TE, Celliers L (1999) Removal of aroclor 1254 by the white rot fungus Coriolus versicolor in the presence of different concentrations of Mn(IV) oxide. Int Biodeterior Biodegrad 44:243–253

    CAS  Google Scholar 

  • Conneely A, Smyth WF, McMullan G (2002) Study of the white-rot fungal degradation of selected phthalocyanine dyes by capillary electrophoresis and liquid chromatography. Anal Chim Acta 451:259–270

    CAS  Google Scholar 

  • Covino S, Svobodova K, Kresinova Z, Petruccioli M, Federici F, D’Annibale A (2010) In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour Technol 101:3004–3012

    CAS  Google Scholar 

  • De S, Perkins M, Dutta SK (2006) Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium. J Hazard Mater B135:350–354

    Google Scholar 

  • Dietrich D, Hickey WJ, Lamar R (1995) Degradation of 4,4?-dichlorobiphenyl, 4,3?,4,4?-tetrachlorobiphenyl, and 2,2?,4,4?,5,5?-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61:3904–3909

    CAS  Google Scholar 

  • Donnelly KC, Chen JC, Huebner HJ, Brown KW, Autenrieth RL, Bonner JS (1997) Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture. Environ Toxicol Chem 16:1105–1110

    CAS  Google Scholar 

  • Dosoretz CG, Grethlein HE (1991) Physiological aspects of the regulation of extracellular enzymes of Phanerochaete chrysosporium. Appl Biochem Biotechnol 28–9:253–265

    Google Scholar 

  • Dos Santos AZ, Neto JMC, Tavares CRG, Da Costa SMG (2004) Screening of filamentous fungi for the decolorization of a commercial reactive dye. J Basic Microbiol 44:288–295

    CAS  Google Scholar 

  • Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microb Technol 7:194–196

    CAS  Google Scholar 

  • Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64:408–414

    CAS  Google Scholar 

  • Faison BD, Kirk TK (1985) Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 49:299–304

    CAS  Google Scholar 

  • Faraco V, Piscitelli A, Sannia G, Giardina P (2007) Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microbiol Biotechnol 23:889–893

    CAS  Google Scholar 

  • Field JA, de Jong E, Costa GF, de Bont JAM (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11:44–49

    CAS  Google Scholar 

  • Ford CI, Walter M, Northcott GL, Di Hong J, Cameron KC, Trower T (2007) Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal by New Zealand Trametes species in contaminated field soils. J Environ Qual 36:1749–1759

    CAS  Google Scholar 

  • Fu YZ, Viraraghavan T (2002) Dye biosorption sites in Aspergillus niger. Bioresour Technol 82:139–145

    CAS  Google Scholar 

  • Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M (2001) Degradation of bisphenol a by purified laccase from Trametes villosa. Biochem Biophys Res Comm 284:704–706

    CAS  Google Scholar 

  • Fukuda T, Uchida H, Suzuki M, Miyamoto H, Morinaga H, Nawata H, Uwajima T (2004) Transformation products of bisphenol A by a recombinant Trametes vilosa laccase and their estrogenic activity. J Chem Technol Biotechnol 79:1212–1218

    CAS  Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls. Biochemical and molecular features. J Biosci Bioeng 105:433–449

    CAS  Google Scholar 

  • Gao X, Zhang X, Zhou S (2005) Biodegradation of RDX wastewater by white rot fungi. Jiangsu Huagong 33:56–58

    CAS  Google Scholar 

  • George HL, VanEtten HD (2001) Characterization of pisatin-inducible cytochrome P450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin. Fungal Genet Biol 33:37–48

    CAS  Google Scholar 

  • Grey R, Hofer C, Schlosser D (1998) Degradation of 2-chlorophenol and formation of 2-chloro-1,4-benzoquinone by mycelia and cell-free crude culture liquids of Trametes versicolor in relation to extracellular laccase activity. J Basic Microbiol 38:371–382

    CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium. J Biol Chem 261:16948–16952

    CAS  Google Scholar 

  • Hammel KE, Green B, Wen ZG (1991) Ring fission of anthracene by eukaryote. Proc Natl Acad Sci USA 88:10605–10608

    CAS  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453

    CAS  Google Scholar 

  • Harazono K, Watanabe Y, Nakamura K (2003) Decolorization of azo dye by the white-rot basidiomycete Phanerochaete sordida and by its manganese peroxidase. J Biosci Bioeng 95:455–459

    CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi-production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    CAS  Google Scholar 

  • Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793

    CAS  Google Scholar 

  • Heinfling-Weidtmann A, Reemtsma T, Storm T, Szewzyk U (2001) Sulfophthalimide as major metabolite formed from sulfonated phthalocyanine dyes by the white-rot fungus Bjerkandera adusta. FEMS Microbiol Lett 203:179–183

    CAS  Google Scholar 

  • Hou HM, Zhou JT, Wang J, Du CH, Yan B (2004) Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem 39:1415–1419

    CAS  Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221

    CAS  Google Scholar 

  • Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9:117–140

    CAS  Google Scholar 

  • Husain M, Husain Q (2008) Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review. Crit Rev Environ Sci Technol 38:1–42

    CAS  Google Scholar 

  • Iimura Y, Hartikainen P, Tatsumi K (1996) Dechlorination of tetrachloroguaiacol by laccase of white rot basidiomycete Coriolus versocolor. Appl Microbiol Biotechnol 45:434–439

    CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528

    CAS  Google Scholar 

  • Johannes C, Majcherczyk A, Huttermann A (1998) Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J Biotechnol 61:151–156

    CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    CAS  Google Scholar 

  • Kamei I, Sonoki S, Haraguchi K, Kondo R (2006a) Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus Phlebia brevispora. Appl Microbiol Biotechnol 73:932–940

    CAS  Google Scholar 

  • Kamei I, Kogura R, Kondo R (2006b) Metabolism of 4,4?-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl Microbiol Biotechnol 72:566–575

    CAS  Google Scholar 

  • Kapdan I, Kargi F, McMullan G, Marchant R (2000) Comparison of white-rot fungi cultures for decolorization of textile dyestuffs. Bioprocess Eng 22:347–351

    CAS  Google Scholar 

  • Kapich AN, Jensen KA, Hammel KE (1999) Peroxyl radicals are potential agents of lignin biodegradation. Febs Lett 461:115–119

    CAS  Google Scholar 

  • Kasinath A, Novotny C, Svobodova K, Patel KC, Sasek V (2003) Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb Technol 32:167–173

    CAS  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35:127–141

    CAS  Google Scholar 

  • Kobayashi K, Katayama-Hirayama K, Tobita S (1996) Isolation and characterization of microorganisms that degrade 4-chlorobiphenyl to 4-chlorobenzoic acid. J Gen Appl Microbiol 42:401–410

    CAS  Google Scholar 

  • Koller G, Moder M, Czihal K (2000) Peroxidative degradation of selected PCB: a mechanistic study. Chemosphere 41:1827–1834

    CAS  Google Scholar 

  • Krcmar P, Ulrich R (1998) Degradation of polychlorinated biphenyl mixtures by the lignin-degrading fungus Phanerochaete chrysosporium. Folia Microbiol 43:79–84

    CAS  Google Scholar 

  • Krcmar P, Kubatova A, Votruba J, Erbanova P, Novotny C, Sasek V (1999) Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World J Microbiol Biotechnol 15:237–242

    CAS  Google Scholar 

  • Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Sasek V (2001) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 43:207–215

    CAS  Google Scholar 

  • Lamar RT, Dietrich DM (1990) In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Appl Environ Microbiol 56:3093–3100

    CAS  Google Scholar 

  • Lamar RT, Evans JW, Glaser JA (1993) Solid-phase treatment of a pentachlorophenol-contaminated soil using lignin-degrading fungi. Environ Sci Technol 27:2566–2571

    CAS  Google Scholar 

  • Lang E, Nerud F, Novotna E, Zadražil F, Martens R (1996) Production of ligninolytic exoenzymes and 14C-pyrene mineralization by Pleurotus sp in lignocellulose substrate. Folia Microbiol 41:489–493

    CAS  Google Scholar 

  • Lee SM, Koo BW, Lee SS, Kim MK, Choi DH, Hong EJ, Jeung EB, Choi IG (2004) Biodegradation of dibutylphthalate by white rot fungi and evaluation on its estrogenic activity. Enzyme Microb Technol 35:417–423

    CAS  Google Scholar 

  • Lee SM, Koo BW, Choi JW, Choi DH, An BS, Jeung EB, Choi IG (2005) Degradation of bisphenol A by white rot fungi, Stereum hirsutum and Heterobasidium insulare, and reduction of its estrogenic activity. Biol Pharm Bull 28:201–207

    CAS  Google Scholar 

  • Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microb 41:185–227

    CAS  Google Scholar 

  • Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M (2010) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85:1869–1879

    CAS  Google Scholar 

  • Lin J, Tang W, Lin J, Zhou S, Zheng P (2006) Degradation of royal demolition explosive by white-rot-fungi. Zhongguo Jishui Paishui 22:74–77

    CAS  Google Scholar 

  • Lorenzo M, Moldes D, Sanroman MA (2006) Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere 63:912–917

    CAS  Google Scholar 

  • Lu YP, Hardin I (2006) Analysis of sulfonated azo dyes degraded by white rot fungus Pleurotus ostreatus. AATCC Rev 6:31–36

    CAS  Google Scholar 

  • Majcherczyk A, Johannes C, Huttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335–341

    CAS  Google Scholar 

  • McKinlay R, Plant JA, Bell JNB, Voulvoulis N (2008) Endocrine disrupting pesticides: implications for risk assessment. Environ Int 34:168–183

    CAS  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WE (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    CAS  Google Scholar 

  • Mielgo I, Lopez C, Moreira MT, Feijoo G, Lema JM (2003) Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions. Biotechnol Prog 19:325–331

    CAS  Google Scholar 

  • Moen MA, Hammel KE (1994) Lipid-peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961

    CAS  Google Scholar 

  • Moldes D, Couto SR, Cameselle C, Sanroman MA (2003) Study of the degradation of dyes by MnP of Phanerochaete chrysosporium produced in a fixed-bed bioreactor. Chemosphere 51:295–303

    CAS  Google Scholar 

  • Moreira MT, Mielgo I, Feijoo G, Lema JM (2000) Evaluation of different fungal strains in the decolourisation of synthetic dyes. Biotechnol Lett 22:1499–1503

    CAS  Google Scholar 

  • Novotny C, Vyas BRM, Erbanova P, Kubatova A, Sasek V (1997) Removal of PCBs by various white rot fungi in liquid culture. Folia Microbiol 42:136–140

    CAS  Google Scholar 

  • Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lang E, Sasek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551

    CAS  Google Scholar 

  • Novotny C, Cajthaml T, Svobodova K, Susla M, Sasek V (2009) Irpex lacteus, a white-rot fungus with biotechnological potential–review. Folia Microbiol 54:375–390

    CAS  Google Scholar 

  • Ollikka P, Harjunpaa T, Palmu K, Mantsala P, Suominen I (1998) Oxidation of crocein orange G by lignin peroxidase isoenzymes kinetics and effect of H2O2. Appl Biochem Biotechnol 75:307–321

    CAS  Google Scholar 

  • Palma C, Martinez AT, Lema JM, Martinez MJ (2000) Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp and Phanerochaete chrysosporium. J Biotechnol 77:235–245

    CAS  Google Scholar 

  • Pastigrigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic-substitution patterns on azo dye degradability by Streptomyces spp and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613

    CAS  Google Scholar 

  • Paszczynski A, Pasti MB, Goszczynski S, Crawford DL, Crawford RL (1991) New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp and Phanerochaete chrysosporium. Enzyme Microb Technol 13:378–384

    CAS  Google Scholar 

  • Perez RB, Benito GG, Miranda MP (1997) Chlorophenol degradation by Phanerochaete chrysosporium. Bioresour Technol 60:207–213

    CAS  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809

    CAS  Google Scholar 

  • Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    CAS  Google Scholar 

  • Podgornik H, Poljansek I, Perdih A (2001) Transformation of indigo carmine by Phanerochaete chrysosporium ligninolytic enzymes. Enzyme Microb Technol 29:166–172

    CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    CAS  Google Scholar 

  • Pozdnyakova NN, Nikiforova SV, Turkovskaya OV (2010) Influence of PAHs on ligninolytic enzymes of the fungus Pleurotus ostreatus D1. Cent Eur J Biol 5:83–94

    CAS  Google Scholar 

  • Rabinovich ML, Bolobova AV, Vasilchenko LG (2004) Decomposition of natural aromatic structures and xenobiotics by fungi. Appl Biochem Microbiol 40:5–23

    CAS  Google Scholar 

  • Reemtsma T, Jakobs J (2001) Concerted chemical and microbial degradation of sulfophthalimides formed from sulfophthalocyanine dyes by white rot fungi. Environ Sci Technol 35:4655–4659

    CAS  Google Scholar 

  • Ricotta A, Unz RF, Bollag J-M (1996) Role of laccase in degradation of pentachlorophenols. Bull Environ Contam Toxicol 57:560–567

    CAS  Google Scholar 

  • Robinson T, Chandran B, Nigam P (2001) Studies on the decolourisation of an artificial textile-effluent by white-rot fungi in N-rich and N-limited media. Appl Microbiol Biotechnol 57:810–813

    CAS  Google Scholar 

  • Rodriguez E, Nuero O, Guillen F, Martinez AT, Martinez MJ (2004) Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase. Soil Biol Biochem 36:909–916

    CAS  Google Scholar 

  • Roy-Arcand L, Archbald FS (1991) Direct dechlorination of chlorophenolic compounds by laccase from Trametes (Coriolus) versicolor. Enzyme Microb Technol 13:194–203

    CAS  Google Scholar 

  • Rubilar O, Feijoo G, Diez C, Lu-Chau TA, Moreira MT, Lema JM (2007) Biodegradation of pentachlorophenol in soil slurry culturesby Bjerkandera adusta and Anthracophyllum discolor. Ind Eng Chem Res 46:6744–6751

    CAS  Google Scholar 

  • Ruiz-Aguilar GML, Fernandez-Sanchez JM, Rodriguez-Vazquez R, Poggi-Veraldo H (2002) Degradation by white rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv Environ Res 6:559–568

    Google Scholar 

  • Ruiz-Duenas FJ, Camarero S, Perez-Boada M, Martinez M, Martinez AT (2001) A new versatile peroxidise from Pleurotus. Biochem Soc Trans 29:116–122

    CAS  Google Scholar 

  • Sack U, Hofrichter M, Fritsche W (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidise of Nematoloma frowardii. FEMS Microbiol Lett 152:227–234

    CAS  Google Scholar 

  • Sasek V, Volfova O, Erbanova P, Vyas BRM, Matucha M (1993) Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria. Biotechnol Lett 15:521–526

    CAS  Google Scholar 

  • Scheibner K, Hofrichter M (1998) Conversion of aminonitrotoluenes by fungal manganese peroxidase. J Basic Microbiol 38:51–59

    CAS  Google Scholar 

  • Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457

    CAS  Google Scholar 

  • Schliephake K, Mainwaring DE, Lonergan GT, Jones IK, Baker WL (2000) Transformation and degradation of the disazo dye Chicago Sky Blue by a purified laccase from Pycnoporus cinnabarinus. Enzyme Microb Technol 27:100–107

    CAS  Google Scholar 

  • Schutzendubel A, Majcherczyk A, Johannes C, Huttermann A (1999) Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta. Int Biodeterior Biodegrad 43:93–100

    CAS  Google Scholar 

  • Shimokawa T, Shoda M, Sugano Y (2009) Purification and characterization of two DyP isozymes from Thanatephorus cucumeris Dec 1 specifically expressed in an air-membrane surface bioreactor. J Biosci Bioeng 107:113–115

    CAS  Google Scholar 

  • Shin KW (2004) The role of enzymes produced by white-rot fungus Irpex lacteus in the decolorization of the textile industry effluent. J Microbiol 42:37–41

    CAS  Google Scholar 

  • Shin KS, Kim YH, Lim JS (2005) Purification and characterization of manganese peroxidase of the white-rot fungus Irpex lacteus. J Microbiol 43:503–509

    CAS  Google Scholar 

  • Soares GMB, Costa-Ferreira M, de Amorim MTP (2001a) Decolorization of an anthraquinone-type dye using a laccase formulation. Bioresour Technol 79:171–177

    CAS  Google Scholar 

  • Soares GMB, de Amorim MTP, Costa-Ferreira M (2001b) Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R. J Biotechnol 89:123–129

    CAS  Google Scholar 

  • Soares GMB, Amorim MTP, Hrdina R, Costa-Ferreira M (2002) Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem 37:581–587

    CAS  Google Scholar 

  • Soares A, Jonasson K, Terrazas E, Guieysse B, Mattiasson B (2005) The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol. Appl Microbiol Biotechnol 66:719–725

    CAS  Google Scholar 

  • Soares A, Guieysse B, Mattiasson B (2006) Influence of agitation on the removal of nonylphenol by the white-rot fungi Trametes versicolor and Bjerkandera sp. BOL 13. Biotechnol Lett 28:139–143

    CAS  Google Scholar 

  • Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manag 91:1915–1929

    CAS  Google Scholar 

  • Sugimori D, Banzawa R, Kurozumi M, Okura I (1999) Removal of disperse dyes by the fungus Cunninghamella polymorpha. J Biosci Bioeng 87:252–254

    CAS  Google Scholar 

  • Susla M, Svobodova K (2008) Effect of various synthetic dyes on the production of manganese-dependent peroxidase isoenzymes by immobilized Irpex lacteus. World J Microbiol Biotechnol 24:225–230

    CAS  Google Scholar 

  • Suzuki K, Hirai H, Murata H, Nishida T (2003) Removal of estrogenic activities of 17 beta-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Water Res 37:1972–1975

    CAS  Google Scholar 

  • Svobodova K, Cajthaml T (2010) New in vitro reporter gene bioassays for screening of hormonal active compounds in the environment. Appl Microbiol Biotechnol 88:839–847

    CAS  Google Scholar 

  • Svobodova K, Erbanova P, Sklenar J, Novotny C (2006) The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures of Irpex lacteus. Folia Microbiol 51:573–578

    CAS  Google Scholar 

  • Svobodova K, Senholdt M, Novotny C, Rehorek A (2007) Mechanism of reactive orange 16 degradation with the white rot fungus Irpex lacteus. Process Biochem 42:1279–1284

    CAS  Google Scholar 

  • Svobodova K, Majcherczyk A, Novotny C, Kues U (2008) Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes. Bioresour Technol 99:463–471

    CAS  Google Scholar 

  • Swamy J, Ramsay JA (1999a) Effects of glucose and NH4+ concentrations on sequential dye decoloration by Trametes versicolor. Enzyme Microb Technol 25:278–284

    CAS  Google Scholar 

  • Swamy J, Ramsay JA (1999b) The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb Technol 24:130–137

    CAS  Google Scholar 

  • Tauber MM, Guebitz GM, Rehorek A (2005) Degradation of azo dyes by laccase and ultrasound treatment. Appl Environ Microbiol 71:2600–2607

    CAS  Google Scholar 

  • Tav?ar M, Svobodova K, Kuplenk J, Novotny C, Pavko A (2006) Biodegradation of azo dye RO16 in different reactors by immobilized Irpex lacteus. Acta Chim Slov 53:338–343

    Google Scholar 

  • Thomas DR, Carswell KS, Georgiou G (1992) Mineralization of biphenyl and PCBs by the white rot fungus Phanerochaete chrysosporium. Biotechnol Bioeng 40:1395–1402

    CAS  Google Scholar 

  • Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42:271–276

    CAS  Google Scholar 

  • Valli K, Warishi H, Gold MH (1992) Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174:2131–2137

    CAS  Google Scholar 

  • Van Aken B, Godefroid LM, Peres CM, Naveau H, Agathos SN (1999) Mineralization of 14C-U ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese-dependent peroxidase of the white-rot basidiomycete Phlebia radiata. J Biotechnol 68:159–169

    Google Scholar 

  • Vyas BRM, Sasek V, Matucha M, Bubner M (1994) Degradation of 3,3?,4,4?-tetrachlorobiphenyl by selected white rot fungi. Chemosphere 28:1127–1134

    CAS  Google Scholar 

  • Wang YX, Yu J (1998) Adsorption and degradation of synthetic dyes on the mycelium of Trametes versicolor. Water Sci Technol 38:233–238

    CAS  Google Scholar 

  • Watanabe T, Shirai N, Okada H, Honda Y, Kuwahara M (2001) Production and chemiluminescent free radical reactions of glyoxal in lipid peroxidation of linoleic acid by the ligninolytic enzyme, manganese peroxidase. Eur J Biochem 268:6114–6122

    CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    CAS  Google Scholar 

  • Wolter M, Zadrazil F, Martens R, Bahadir M (1997) Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate. Appl Microbiol Biotechnol 48:398–404

    CAS  Google Scholar 

  • Wong YX, Yu J (1999) Laccase-catalyzed decolorization of synthetic dyes. Water Res 33:3512–3520

    CAS  Google Scholar 

  • Wu F, Ozaki H, Terashima Y, Imada T, Ohkouchi Y (1996) Activities of ligninolytic enzymes of the white rot fungus, Phanerochaete chrysosporium and its recalcitrant substance degradability. Water Sci Technol 34:69–78

    Google Scholar 

  • Yadav JS, Quensen JF, Tiedje JM, Reddy CA (1995) Degradation of polychlorinated biphenyl mixtures (Aroclor 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl Environ Microbiol 61:2560–2565

    CAS  Google Scholar 

  • Yemendzhiev H, Gerginova M, Krastanov A, Stoilova I, Alexieva Z (2008) Growth of Trametes versicolor on phenol. J Ind Microbiol Biotechnol 35:1309–1312

    CAS  Google Scholar 

  • Zhao XH, Hardin IR, Hwang HM (2006) Biodegradation of a model azo disperse dye by the white rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 57:1–6

    CAS  Google Scholar 

  • Zhao XH, Lu YP, Phillips DR, Hwang HM, Hardin IR (2007) Study of biodegradation products from azo dyes in fungal degradation by capillary electrophoresis/electrospray mass spectrometry. J Chromatogr A 1159:217–224

    CAS  Google Scholar 

  • Zille A, Gornacka B, Rehorek A, Cavaco-Paulo A (2005a) Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. Appl Environ Microb 71:6711–6718

    CAS  Google Scholar 

  • Zille A, Munteanu FD, Gubitz GM, Cavaco-Paulo A (2005b) Laccase kinetics of degradation and coupling reactions. J Mol Catal B-Enzymatic 33:23–28

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Cajthaml .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cajthaml, T., Svobodová, K. (2012). Biodegradation of Aromatic Pollutants by Ligninolytic Fungal Strains. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_11

Download citation

Publish with us

Policies and ethics