Biodegradation of Aromatic Pollutants by Ligninolytic Fungal Strains

  • Tomáš Cajthaml
  • Kateřina Svobodová
Part of the Environmental Science and Engineering book series (ESE)


The environmental impact of organic aromatic pollutants mostly of anthropogenic origin is of increasing interest due to their persistency and often of serious effects on the environmental health. Many of these compounds represent industrial chemicals that were deliberately or inadvertently released into the environment. Others belong to undesired chemical by-products, personal care compounds or pharmaceuticals that resist against microbial or chemical processes, either during waste water treatment or in soil.


Ligninolytic Enzyme Ligninolytic Fungus Aromatic Pollutant Violuric Acid Diphenic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adebusoye SA, Picardal FW, Ilori MO, Amund OO (2008) Influence of chlorobenzoic acids on the growth and degradation potentials of PCB-degrading microorganisms. World J Microbiol Biotechnol 24:1203–1208Google Scholar
  2. Alexander M (1994) Biodegradation and bioremediation. Academic Press, San DiegoGoogle Scholar
  3. Alleman BC, Logan BE, Gilbertson RL (1995) Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors. Water Res 29:61–67Google Scholar
  4. Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783Google Scholar
  5. Baborova P, Moder M, Baldrian P, Cajthamlova K, Cajthaml T (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157:248–253Google Scholar
  6. Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12Google Scholar
  7. Beaudette LA, Davies S, Fedorak PM, Ward OP, Pickard MA (1998) Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Environ Microbiol 64:2020–2025Google Scholar
  8. Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996a) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559Google Scholar
  9. Bezalel L, Hadar Y, Cerniglia CE (1996b) Mineralization of polycyclic aromatic hydrocarbons by the white-rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:292–295Google Scholar
  10. Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996c) Metabolism of phenanthrene by the white-rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2547–2553Google Scholar
  11. Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white-rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501Google Scholar
  12. Bhatt M, Cajthaml T, Sasek V (2002) Mycoremediation of PAH-contaminated soil. Folia Microbiol 47:255–258Google Scholar
  13. Blanquez P, Guieysse B (2008) Continuous biodegradation of 17 beta-estradiol and 17 alpha-ethynylestradiol by Trametes versicolor. J Hazard Mater 150:459–462Google Scholar
  14. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436Google Scholar
  15. Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP (2007a) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67:770–778Google Scholar
  16. Cabana H, Jones JP, Agathos SN (2007b) Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: a review. Eng Life Sci 7:429–456Google Scholar
  17. Cabana H, Jones JP, Agathos SN (2007c) Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. J Biotechnol 132:23–31Google Scholar
  18. Cajthaml T, Möder M, Ka?er P, Sasek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974:213–222Google Scholar
  19. Cajthaml T, Erbanova P, Vaclav S, Moeder M (2006) Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus. Chemosphere 64:560–564Google Scholar
  20. Cajthaml T, Erbanova P, Kollmann A, Novotny C, Sasek V (2008) Mougin C Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol 53:289–294Google Scholar
  21. Cajthaml T, Kresinova Z, Svobodova K, Sigler K, Rezanka T (2009a) Microbial transformation of synthetic estrogen 17 alpha-ethinylestradiol. Environ Pollut 157:3325–3335Google Scholar
  22. Cajthaml T, Kresinova Z, Svobodova K, Moeder M (2009b) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75:745–750Google Scholar
  23. Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in natural degradation of lignin that has both Mn-peroxidase and lignin-peroxidase substrate binding sites. J Biol Chem 274:10324–10330Google Scholar
  24. Camarero S, Cañas AI, Nousiainen P, Record E, Lomascolo A, Martínez J, Martíneza T (2008) P-Hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ Sci Technol 42:6703–6709Google Scholar
  25. Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705Google Scholar
  26. Cañas AI, Alcalde M, Plou F, Martinez MJ, Martinez AT, Camarero S (2007) Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ Sci Technol 41:2964–2971Google Scholar
  27. Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb Technol 29:473–477Google Scholar
  28. Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377Google Scholar
  29. Chivukula M, Spadaro JT, Renganathan V (1995) Lignin peroxidase catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34:7765–7772Google Scholar
  30. Choudhary MI, Musharraf SG, Ali RA, Atif M, Atta UR (2004) Microbial transformation of antifertility agents, norethisterone and 17 alpha-ethynylestradiol. Zeitschrift fur Naturforschung Section B-A J Chem Sci 59:319–323Google Scholar
  31. Cloete TE, Celliers L (1999) Removal of aroclor 1254 by the white rot fungus Coriolus versicolor in the presence of different concentrations of Mn(IV) oxide. Int Biodeterior Biodegrad 44:243–253Google Scholar
  32. Conneely A, Smyth WF, McMullan G (2002) Study of the white-rot fungal degradation of selected phthalocyanine dyes by capillary electrophoresis and liquid chromatography. Anal Chim Acta 451:259–270Google Scholar
  33. Covino S, Svobodova K, Kresinova Z, Petruccioli M, Federici F, D’Annibale A (2010) In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour Technol 101:3004–3012Google Scholar
  34. De S, Perkins M, Dutta SK (2006) Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium. J Hazard Mater B135:350–354Google Scholar
  35. Dietrich D, Hickey WJ, Lamar R (1995) Degradation of 4,4?-dichlorobiphenyl, 4,3?,4,4?-tetrachlorobiphenyl, and 2,2?,4,4?,5,5?-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61:3904–3909Google Scholar
  36. Donnelly KC, Chen JC, Huebner HJ, Brown KW, Autenrieth RL, Bonner JS (1997) Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture. Environ Toxicol Chem 16:1105–1110Google Scholar
  37. Dosoretz CG, Grethlein HE (1991) Physiological aspects of the regulation of extracellular enzymes of Phanerochaete chrysosporium. Appl Biochem Biotechnol 28–9:253–265Google Scholar
  38. Dos Santos AZ, Neto JMC, Tavares CRG, Da Costa SMG (2004) Screening of filamentous fungi for the decolorization of a commercial reactive dye. J Basic Microbiol 44:288–295Google Scholar
  39. Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microb Technol 7:194–196Google Scholar
  40. Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64:408–414Google Scholar
  41. Faison BD, Kirk TK (1985) Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 49:299–304Google Scholar
  42. Faraco V, Piscitelli A, Sannia G, Giardina P (2007) Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microbiol Biotechnol 23:889–893Google Scholar
  43. Field JA, de Jong E, Costa GF, de Bont JAM (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11:44–49Google Scholar
  44. Ford CI, Walter M, Northcott GL, Di Hong J, Cameron KC, Trower T (2007) Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal by New Zealand Trametes species in contaminated field soils. J Environ Qual 36:1749–1759Google Scholar
  45. Fu YZ, Viraraghavan T (2002) Dye biosorption sites in Aspergillus niger. Bioresour Technol 82:139–145Google Scholar
  46. Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M (2001) Degradation of bisphenol a by purified laccase from Trametes villosa. Biochem Biophys Res Comm 284:704–706Google Scholar
  47. Fukuda T, Uchida H, Suzuki M, Miyamoto H, Morinaga H, Nawata H, Uwajima T (2004) Transformation products of bisphenol A by a recombinant Trametes vilosa laccase and their estrogenic activity. J Chem Technol Biotechnol 79:1212–1218Google Scholar
  48. Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls. Biochemical and molecular features. J Biosci Bioeng 105:433–449Google Scholar
  49. Gao X, Zhang X, Zhou S (2005) Biodegradation of RDX wastewater by white rot fungi. Jiangsu Huagong 33:56–58Google Scholar
  50. George HL, VanEtten HD (2001) Characterization of pisatin-inducible cytochrome P450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin. Fungal Genet Biol 33:37–48Google Scholar
  51. Grey R, Hofer C, Schlosser D (1998) Degradation of 2-chlorophenol and formation of 2-chloro-1,4-benzoquinone by mycelia and cell-free crude culture liquids of Trametes versicolor in relation to extracellular laccase activity. J Basic Microbiol 38:371–382Google Scholar
  52. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium. J Biol Chem 261:16948–16952Google Scholar
  53. Hammel KE, Green B, Wen ZG (1991) Ring fission of anthracene by eukaryote. Proc Natl Acad Sci USA 88:10605–10608Google Scholar
  54. Hammel KE, Kapich AN, Jensen KA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453Google Scholar
  55. Harazono K, Watanabe Y, Nakamura K (2003) Decolorization of azo dye by the white-rot basidiomycete Phanerochaete sordida and by its manganese peroxidase. J Biosci Bioeng 95:455–459Google Scholar
  56. Haritash AK, Kaushik CP (2009) Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15Google Scholar
  57. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi-production and role in lignin degradation. FEMS Microbiol Rev 13:125–135Google Scholar
  58. Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793Google Scholar
  59. Heinfling-Weidtmann A, Reemtsma T, Storm T, Szewzyk U (2001) Sulfophthalimide as major metabolite formed from sulfonated phthalocyanine dyes by the white-rot fungus Bjerkandera adusta. FEMS Microbiol Lett 203:179–183Google Scholar
  60. Hou HM, Zhou JT, Wang J, Du CH, Yan B (2004) Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem 39:1415–1419Google Scholar
  61. Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221Google Scholar
  62. Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9:117–140Google Scholar
  63. Husain M, Husain Q (2008) Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review. Crit Rev Environ Sci Technol 38:1–42Google Scholar
  64. Iimura Y, Hartikainen P, Tatsumi K (1996) Dechlorination of tetrachloroguaiacol by laccase of white rot basidiomycete Coriolus versocolor. Appl Microbiol Biotechnol 45:434–439Google Scholar
  65. Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528Google Scholar
  66. Johannes C, Majcherczyk A, Huttermann A (1998) Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J Biotechnol 61:151–156Google Scholar
  67. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84Google Scholar
  68. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88Google Scholar
  69. Kamei I, Sonoki S, Haraguchi K, Kondo R (2006a) Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus Phlebia brevispora. Appl Microbiol Biotechnol 73:932–940Google Scholar
  70. Kamei I, Kogura R, Kondo R (2006b) Metabolism of 4,4?-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl Microbiol Biotechnol 72:566–575Google Scholar
  71. Kapdan I, Kargi F, McMullan G, Marchant R (2000) Comparison of white-rot fungi cultures for decolorization of textile dyestuffs. Bioprocess Eng 22:347–351Google Scholar
  72. Kapich AN, Jensen KA, Hammel KE (1999) Peroxyl radicals are potential agents of lignin biodegradation. Febs Lett 461:115–119Google Scholar
  73. Kasinath A, Novotny C, Svobodova K, Patel KC, Sasek V (2003) Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb Technol 32:167–173Google Scholar
  74. Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35:127–141Google Scholar
  75. Kobayashi K, Katayama-Hirayama K, Tobita S (1996) Isolation and characterization of microorganisms that degrade 4-chlorobiphenyl to 4-chlorobenzoic acid. J Gen Appl Microbiol 42:401–410Google Scholar
  76. Koller G, Moder M, Czihal K (2000) Peroxidative degradation of selected PCB: a mechanistic study. Chemosphere 41:1827–1834Google Scholar
  77. Krcmar P, Ulrich R (1998) Degradation of polychlorinated biphenyl mixtures by the lignin-degrading fungus Phanerochaete chrysosporium. Folia Microbiol 43:79–84Google Scholar
  78. Krcmar P, Kubatova A, Votruba J, Erbanova P, Novotny C, Sasek V (1999) Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World J Microbiol Biotechnol 15:237–242Google Scholar
  79. Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Sasek V (2001) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 43:207–215Google Scholar
  80. Lamar RT, Dietrich DM (1990) In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Appl Environ Microbiol 56:3093–3100Google Scholar
  81. Lamar RT, Evans JW, Glaser JA (1993) Solid-phase treatment of a pentachlorophenol-contaminated soil using lignin-degrading fungi. Environ Sci Technol 27:2566–2571Google Scholar
  82. Lang E, Nerud F, Novotna E, Zadražil F, Martens R (1996) Production of ligninolytic exoenzymes and 14C-pyrene mineralization by Pleurotus sp in lignocellulose substrate. Folia Microbiol 41:489–493Google Scholar
  83. Lee SM, Koo BW, Lee SS, Kim MK, Choi DH, Hong EJ, Jeung EB, Choi IG (2004) Biodegradation of dibutylphthalate by white rot fungi and evaluation on its estrogenic activity. Enzyme Microb Technol 35:417–423Google Scholar
  84. Lee SM, Koo BW, Choi JW, Choi DH, An BS, Jeung EB, Choi IG (2005) Degradation of bisphenol A by white rot fungi, Stereum hirsutum and Heterobasidium insulare, and reduction of its estrogenic activity. Biol Pharm Bull 28:201–207Google Scholar
  85. Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microb 41:185–227Google Scholar
  86. Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M (2010) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85:1869–1879Google Scholar
  87. Lin J, Tang W, Lin J, Zhou S, Zheng P (2006) Degradation of royal demolition explosive by white-rot-fungi. Zhongguo Jishui Paishui 22:74–77Google Scholar
  88. Lorenzo M, Moldes D, Sanroman MA (2006) Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere 63:912–917Google Scholar
  89. Lu YP, Hardin I (2006) Analysis of sulfonated azo dyes degraded by white rot fungus Pleurotus ostreatus. AATCC Rev 6:31–36Google Scholar
  90. Majcherczyk A, Johannes C, Huttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335–341Google Scholar
  91. McKinlay R, Plant JA, Bell JNB, Voulvoulis N (2008) Endocrine disrupting pesticides: implications for risk assessment. Environ Int 34:168–183Google Scholar
  92. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WE (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87Google Scholar
  93. Mielgo I, Lopez C, Moreira MT, Feijoo G, Lema JM (2003) Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions. Biotechnol Prog 19:325–331Google Scholar
  94. Moen MA, Hammel KE (1994) Lipid-peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961Google Scholar
  95. Moldes D, Couto SR, Cameselle C, Sanroman MA (2003) Study of the degradation of dyes by MnP of Phanerochaete chrysosporium produced in a fixed-bed bioreactor. Chemosphere 51:295–303Google Scholar
  96. Moreira MT, Mielgo I, Feijoo G, Lema JM (2000) Evaluation of different fungal strains in the decolourisation of synthetic dyes. Biotechnol Lett 22:1499–1503Google Scholar
  97. Novotny C, Vyas BRM, Erbanova P, Kubatova A, Sasek V (1997) Removal of PCBs by various white rot fungi in liquid culture. Folia Microbiol 42:136–140Google Scholar
  98. Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lang E, Sasek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551Google Scholar
  99. Novotny C, Cajthaml T, Svobodova K, Susla M, Sasek V (2009) Irpex lacteus, a white-rot fungus with biotechnological potential–review. Folia Microbiol 54:375–390Google Scholar
  100. Ollikka P, Harjunpaa T, Palmu K, Mantsala P, Suominen I (1998) Oxidation of crocein orange G by lignin peroxidase isoenzymes kinetics and effect of H2O2. Appl Biochem Biotechnol 75:307–321Google Scholar
  101. Palma C, Martinez AT, Lema JM, Martinez MJ (2000) Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp and Phanerochaete chrysosporium. J Biotechnol 77:235–245Google Scholar
  102. Pastigrigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic-substitution patterns on azo dye degradability by Streptomyces spp and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613Google Scholar
  103. Paszczynski A, Pasti MB, Goszczynski S, Crawford DL, Crawford RL (1991) New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp and Phanerochaete chrysosporium. Enzyme Microb Technol 13:378–384Google Scholar
  104. Perez RB, Benito GG, Miranda MP (1997) Chlorophenol degradation by Phanerochaete chrysosporium. Bioresour Technol 60:207–213Google Scholar
  105. Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809Google Scholar
  106. Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214Google Scholar
  107. Podgornik H, Poljansek I, Perdih A (2001) Transformation of indigo carmine by Phanerochaete chrysosporium ligninolytic enzymes. Enzyme Microb Technol 29:166–172Google Scholar
  108. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33Google Scholar
  109. Pozdnyakova NN, Nikiforova SV, Turkovskaya OV (2010) Influence of PAHs on ligninolytic enzymes of the fungus Pleurotus ostreatus D1. Cent Eur J Biol 5:83–94Google Scholar
  110. Rabinovich ML, Bolobova AV, Vasilchenko LG (2004) Decomposition of natural aromatic structures and xenobiotics by fungi. Appl Biochem Microbiol 40:5–23Google Scholar
  111. Reemtsma T, Jakobs J (2001) Concerted chemical and microbial degradation of sulfophthalimides formed from sulfophthalocyanine dyes by white rot fungi. Environ Sci Technol 35:4655–4659Google Scholar
  112. Ricotta A, Unz RF, Bollag J-M (1996) Role of laccase in degradation of pentachlorophenols. Bull Environ Contam Toxicol 57:560–567Google Scholar
  113. Robinson T, Chandran B, Nigam P (2001) Studies on the decolourisation of an artificial textile-effluent by white-rot fungi in N-rich and N-limited media. Appl Microbiol Biotechnol 57:810–813Google Scholar
  114. Rodriguez E, Nuero O, Guillen F, Martinez AT, Martinez MJ (2004) Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase. Soil Biol Biochem 36:909–916Google Scholar
  115. Roy-Arcand L, Archbald FS (1991) Direct dechlorination of chlorophenolic compounds by laccase from Trametes (Coriolus) versicolor. Enzyme Microb Technol 13:194–203Google Scholar
  116. Rubilar O, Feijoo G, Diez C, Lu-Chau TA, Moreira MT, Lema JM (2007) Biodegradation of pentachlorophenol in soil slurry culturesby Bjerkandera adusta and Anthracophyllum discolor. Ind Eng Chem Res 46:6744–6751Google Scholar
  117. Ruiz-Aguilar GML, Fernandez-Sanchez JM, Rodriguez-Vazquez R, Poggi-Veraldo H (2002) Degradation by white rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv Environ Res 6:559–568Google Scholar
  118. Ruiz-Duenas FJ, Camarero S, Perez-Boada M, Martinez M, Martinez AT (2001) A new versatile peroxidise from Pleurotus. Biochem Soc Trans 29:116–122Google Scholar
  119. Sack U, Hofrichter M, Fritsche W (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidise of Nematoloma frowardii. FEMS Microbiol Lett 152:227–234Google Scholar
  120. Sasek V, Volfova O, Erbanova P, Vyas BRM, Matucha M (1993) Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria. Biotechnol Lett 15:521–526Google Scholar
  121. Scheibner K, Hofrichter M (1998) Conversion of aminonitrotoluenes by fungal manganese peroxidase. J Basic Microbiol 38:51–59Google Scholar
  122. Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457Google Scholar
  123. Schliephake K, Mainwaring DE, Lonergan GT, Jones IK, Baker WL (2000) Transformation and degradation of the disazo dye Chicago Sky Blue by a purified laccase from Pycnoporus cinnabarinus. Enzyme Microb Technol 27:100–107Google Scholar
  124. Schutzendubel A, Majcherczyk A, Johannes C, Huttermann A (1999) Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta. Int Biodeterior Biodegrad 43:93–100Google Scholar
  125. Shimokawa T, Shoda M, Sugano Y (2009) Purification and characterization of two DyP isozymes from Thanatephorus cucumeris Dec 1 specifically expressed in an air-membrane surface bioreactor. J Biosci Bioeng 107:113–115Google Scholar
  126. Shin KW (2004) The role of enzymes produced by white-rot fungus Irpex lacteus in the decolorization of the textile industry effluent. J Microbiol 42:37–41Google Scholar
  127. Shin KS, Kim YH, Lim JS (2005) Purification and characterization of manganese peroxidase of the white-rot fungus Irpex lacteus. J Microbiol 43:503–509Google Scholar
  128. Soares GMB, Costa-Ferreira M, de Amorim MTP (2001a) Decolorization of an anthraquinone-type dye using a laccase formulation. Bioresour Technol 79:171–177Google Scholar
  129. Soares GMB, de Amorim MTP, Costa-Ferreira M (2001b) Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R. J Biotechnol 89:123–129Google Scholar
  130. Soares GMB, Amorim MTP, Hrdina R, Costa-Ferreira M (2002) Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem 37:581–587Google Scholar
  131. Soares A, Jonasson K, Terrazas E, Guieysse B, Mattiasson B (2005) The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol. Appl Microbiol Biotechnol 66:719–725Google Scholar
  132. Soares A, Guieysse B, Mattiasson B (2006) Influence of agitation on the removal of nonylphenol by the white-rot fungi Trametes versicolor and Bjerkandera sp. BOL 13. Biotechnol Lett 28:139–143Google Scholar
  133. Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manag 91:1915–1929Google Scholar
  134. Sugimori D, Banzawa R, Kurozumi M, Okura I (1999) Removal of disperse dyes by the fungus Cunninghamella polymorpha. J Biosci Bioeng 87:252–254Google Scholar
  135. Susla M, Svobodova K (2008) Effect of various synthetic dyes on the production of manganese-dependent peroxidase isoenzymes by immobilized Irpex lacteus. World J Microbiol Biotechnol 24:225–230Google Scholar
  136. Suzuki K, Hirai H, Murata H, Nishida T (2003) Removal of estrogenic activities of 17 beta-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Water Res 37:1972–1975Google Scholar
  137. Svobodova K, Cajthaml T (2010) New in vitro reporter gene bioassays for screening of hormonal active compounds in the environment. Appl Microbiol Biotechnol 88:839–847Google Scholar
  138. Svobodova K, Erbanova P, Sklenar J, Novotny C (2006) The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures of Irpex lacteus. Folia Microbiol 51:573–578Google Scholar
  139. Svobodova K, Senholdt M, Novotny C, Rehorek A (2007) Mechanism of reactive orange 16 degradation with the white rot fungus Irpex lacteus. Process Biochem 42:1279–1284Google Scholar
  140. Svobodova K, Majcherczyk A, Novotny C, Kues U (2008) Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes. Bioresour Technol 99:463–471Google Scholar
  141. Swamy J, Ramsay JA (1999a) Effects of glucose and NH4+ concentrations on sequential dye decoloration by Trametes versicolor. Enzyme Microb Technol 25:278–284Google Scholar
  142. Swamy J, Ramsay JA (1999b) The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb Technol 24:130–137Google Scholar
  143. Tauber MM, Guebitz GM, Rehorek A (2005) Degradation of azo dyes by laccase and ultrasound treatment. Appl Environ Microbiol 71:2600–2607Google Scholar
  144. Tav?ar M, Svobodova K, Kuplenk J, Novotny C, Pavko A (2006) Biodegradation of azo dye RO16 in different reactors by immobilized Irpex lacteus. Acta Chim Slov 53:338–343Google Scholar
  145. Thomas DR, Carswell KS, Georgiou G (1992) Mineralization of biphenyl and PCBs by the white rot fungus Phanerochaete chrysosporium. Biotechnol Bioeng 40:1395–1402Google Scholar
  146. Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42:271–276Google Scholar
  147. Valli K, Warishi H, Gold MH (1992) Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174:2131–2137Google Scholar
  148. Van Aken B, Godefroid LM, Peres CM, Naveau H, Agathos SN (1999) Mineralization of 14C-U ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese-dependent peroxidase of the white-rot basidiomycete Phlebia radiata. J Biotechnol 68:159–169Google Scholar
  149. Vyas BRM, Sasek V, Matucha M, Bubner M (1994) Degradation of 3,3?,4,4?-tetrachlorobiphenyl by selected white rot fungi. Chemosphere 28:1127–1134Google Scholar
  150. Wang YX, Yu J (1998) Adsorption and degradation of synthetic dyes on the mycelium of Trametes versicolor. Water Sci Technol 38:233–238Google Scholar
  151. Watanabe T, Shirai N, Okada H, Honda Y, Kuwahara M (2001) Production and chemiluminescent free radical reactions of glyoxal in lipid peroxidation of linoleic acid by the ligninolytic enzyme, manganese peroxidase. Eur J Biochem 268:6114–6122Google Scholar
  152. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187Google Scholar
  153. Wolter M, Zadrazil F, Martens R, Bahadir M (1997) Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate. Appl Microbiol Biotechnol 48:398–404Google Scholar
  154. Wong YX, Yu J (1999) Laccase-catalyzed decolorization of synthetic dyes. Water Res 33:3512–3520Google Scholar
  155. Wu F, Ozaki H, Terashima Y, Imada T, Ohkouchi Y (1996) Activities of ligninolytic enzymes of the white rot fungus, Phanerochaete chrysosporium and its recalcitrant substance degradability. Water Sci Technol 34:69–78Google Scholar
  156. Yadav JS, Quensen JF, Tiedje JM, Reddy CA (1995) Degradation of polychlorinated biphenyl mixtures (Aroclor 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl Environ Microbiol 61:2560–2565Google Scholar
  157. Yemendzhiev H, Gerginova M, Krastanov A, Stoilova I, Alexieva Z (2008) Growth of Trametes versicolor on phenol. J Ind Microbiol Biotechnol 35:1309–1312Google Scholar
  158. Zhao XH, Hardin IR, Hwang HM (2006) Biodegradation of a model azo disperse dye by the white rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 57:1–6Google Scholar
  159. Zhao XH, Lu YP, Phillips DR, Hwang HM, Hardin IR (2007) Study of biodegradation products from azo dyes in fungal degradation by capillary electrophoresis/electrospray mass spectrometry. J Chromatogr A 1159:217–224Google Scholar
  160. Zille A, Gornacka B, Rehorek A, Cavaco-Paulo A (2005a) Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. Appl Environ Microb 71:6711–6718Google Scholar
  161. Zille A, Munteanu FD, Gubitz GM, Cavaco-Paulo A (2005b) Laccase kinetics of degradation and coupling reactions. J Mol Catal B-Enzymatic 33:23–28Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Laboratory of Environmental BiotechnologyInstitute of Microbiology, v.v.i., Academy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations