Microbial Degradation of PAHs: Organisms and Environmental Compartments

  • Elisa Rojo-Nieto
  • José A. Perales-Vargas-Machuca
Part of the Environmental Science and Engineering book series (ESE)


Polycyclic aromatic hydrocarbons (PAHs) represent a major class of organic compounds (Xue and Warshawsky 2005), that consist of over 100 individual moieties (Rehmann et al. 2008). Because of their toxicity and wide spread occurrence, PAH represent one of the most important groups of environmental pollutants (Eggen and Majcherczyk 1998). They consist of two or more fused benzene rings in linear, angular or cluster arrangements. The persistence of these chemicals in the environment is mainly due to their low solubility in water and stable polycondensed aromatic structure. Hydrophobicity and recalcitrance of PAHs to microbial degradation generally increase as the molecular weight increases. Besides being toxic to animals, some PAHs with four or more benzene rings, such as benzo[a]anthracene, chrysene and benzo[a]pyrene, have been shown to be carcinogenic (Bezalel et al. 1996).


Anaerobic Degradation Polycyclic Aromatic Hydrocarbon Concentration Anaerobic Biodegradation Polycyclic Aromatic Hydrocarbon Degradation Aromatic Pollutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ambrosoli R, Petruzzelli L, Luis Minati J, Ajmone Marsan F (2005) Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere 60:1231–1236CrossRefGoogle Scholar
  2. Anokhina TO, Kochetkov VV, Zelenkova NF, Balakshina VV, Boronin AM (2004) Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant-microbial associations. Appl Biochem Microbiol 40:568–572CrossRefGoogle Scholar
  3. Arias L, Bauzá J, Tobella J, Vila J, Grifoll M (2008) A microcosm system and an analytical protocol to assess PAH degradation and metabolite formation in soils. Biodegradation 19:425–434CrossRefGoogle Scholar
  4. Arias AH, Spetter CC, Freije RH, Marcovecchio JE (2009) Polycyclic aromatic hydrocarbons in water, mussels (Brachidontes sp., Tagelus sp.) and fish (Odontesthes sp.) from Bahía Blanca Estuary, Argentina. Estuarine, Coastal, Shelf Sci 85:67–81CrossRefGoogle Scholar
  5. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  6. Barret M, Carrère H, Delgadillo L, Patureau D (2010) PAH fate during the anaerobic digestion of contaminated sludge: Do bioavailability and/or cometabolism limit their biodegradation? Water Res 44:3797–3806CrossRefGoogle Scholar
  7. Baumard P, Budzinski H, Garrigues P, Narbonne JF, Burgeot T, Michel X, Bellocq J (1999) Polycyclic aromatic hydrocarbon (PAH) burden of mussels (Mytilus sp.) in different marine environments in relation with sediment PAH contamination, and bioavailability. Marine Environ Res 47:415–439CrossRefGoogle Scholar
  8. Bengtsson G, Törneman N, Yang X (2010) Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Environ Pollut 158:2865–2871CrossRefGoogle Scholar
  9. Bernal-Martínez A, Carrère H, Patureau D, Delgenès JP (2005) Combining anaerobic digestion and ozonation to remove PAH from urban sludge. Process Biochem 40:3244–3250CrossRefGoogle Scholar
  10. Bezalel L, Hadar Y, Fu P, Freeman J, Cerniglia C (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and ibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559Google Scholar
  11. Bogan BW, Sullivan WR (2003) Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 52:1717–1726CrossRefGoogle Scholar
  12. Borde X, Guieysse B, Delgado O, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2003) Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Biores Technol 86:293–300CrossRefGoogle Scholar
  13. Bosma T, Harms H, Zehnder A (2001) Biodegradation of xenobiotics in environment and technosphere. In: Beek B (ed) Biodegradation and Persistence. Springer, BerlinGoogle Scholar
  14. Bouchez M, Blanchet D, Vandecasteele JP (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43:156–164CrossRefGoogle Scholar
  15. Buchholz F, Wick LY, Harms H, Maskow T (2007) The kinetics of polycyclic aromatic hydrocarbon (PAH) biodegradation assessed by isothermal titration calorimetry (ITC). Thermochimica Acta 458:47–53CrossRefGoogle Scholar
  16. Bumpus JA (1989) Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158Google Scholar
  17. Cajthaml T, Möder M, Kacer P, Sasek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974:213–222CrossRefGoogle Scholar
  18. Cao B, Nagarajan K, Loh K-C (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228CrossRefGoogle Scholar
  19. Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. In: Allen IL (ed) Advances in applied microbiology. Academic Press,  Google Scholar
  20. Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338CrossRefGoogle Scholar
  21. Cerniglia CE, Sutherland JB (2001) Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In: de Gadd GM (ed) Fungi in Bioremediation. Cambridge University Press, CambridgeGoogle Scholar
  22. Cerniglia CE, Gibson DT, Van Baalen C (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500Google Scholar
  23. Chang B-V, Chang I, Yuan S (2008) Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bull Environ Contam Toxicol 80:145–149CrossRefGoogle Scholar
  24. Chen J, Wong MH, Wong YS, Tam NFY (2008) Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Marine Pollut Bull 57:695–702CrossRefGoogle Scholar
  25. Chen B, Wang Y, Hu D (2010) Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. J Hazard Mater 179:845–851CrossRefGoogle Scholar
  26. Chiou CT, Mcgroddy SE, Kile DE (1998) Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ Sci Technol 32:264–269CrossRefGoogle Scholar
  27. Code of Federal Regulation (1982) Title 40, Appendix A to part 423-126 Priority pollutants. 47 FR 52304Google Scholar
  28. Countway RE, Dickhut RM, Canuel EA (2003) Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA Estuary. Organ Geochem 34:209–224CrossRefGoogle Scholar
  29. Covino S, Cvancarová M, Muzikár M, Svobodová K, D’annibale A, Petruccioli M, Federici F, Kresinová Z, Cajthaml T (2010a) An efficient PAH-degrading Lentinus (Panus) tigrinus strain: Effect of inoculum formulation and pollutant bioavailability in solid matrices. J Hazard Mater 183:669–676CrossRefGoogle Scholar
  30. Covino S, Svobodová K, Kresinová Z, Petruccioli M, Federici F, D’annibale A, Cvancarová M, Cajthaml T (2010b) In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Biores Technol 101:3004–3012CrossRefGoogle Scholar
  31. Daane LL, Harjono I, Zylstra GJ, Haggblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67:2683–2691CrossRefGoogle Scholar
  32. Daane LL, Harjono I, Barns SM, Launen LA, Palleroni NJ, Haggblom MM (2002) PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52:131–139Google Scholar
  33. Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Biores Technol 98:1339–1345CrossRefGoogle Scholar
  34. Dean-Ross D, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol 41:1–7CrossRefGoogle Scholar
  35. Djomo JE, Garrigues P, Narbonne JF (1996) Uptake and depuration of polycyclic aromatic hydrocarbons from sediment by the zebrafish (Brachydanio Rerio). Environ Toxicol Chem 15:1177–1181CrossRefGoogle Scholar
  36. Eggen T, Majcherczyk A (1998) Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white rot fungus Pleurotus ostreatus. Int Biodeter Biodegrad 41:111–117CrossRefGoogle Scholar
  37. Fernandes MB, Sicre MA, Boireau A, Tronczynski J (1997) Polyaromatic hydrocarbon (PAH) distributions in the Seine river and its estuary. Marine Pollut Bull 34:857–867CrossRefGoogle Scholar
  38. Fuchedzhieva N, Karakashev D, Angelidaki I (2008) Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds. J Hazard Mater 153:123–127CrossRefGoogle Scholar
  39. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J Hazard Mater 169:1–15CrossRefGoogle Scholar
  40. Hinga KR (2003) Degradation rates of low molecular weight PAH correlate with sediment TOC in marine subtidal sediments. Marine Pollut Bull 46:466–474CrossRefGoogle Scholar
  41. Hong Y-W, Yuan D-X, Lin Q-M, Yang T-L (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Pollut Bull 56:1400–1405CrossRefGoogle Scholar
  42. Huesemann MH, Hausmann TS, Fortman TJ (2004) Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15:261–274CrossRefGoogle Scholar
  43. Hwang S, Cutright TJ (2004) Preliminary exploration of the relationships between soil characteristics and PAH desorption and biodegradation. Environ Int 29:887–894CrossRefGoogle Scholar
  44. IARC (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Monographs on the evaluation of carcinogenic risks to humans, vol. 92Google Scholar
  45. Jackson W, Pardue J (1999) Potential for intrinsic and enhanced crude oil biodegradation in Louisiana’s freshwater marshes. Wetlands 19:28–34CrossRefGoogle Scholar
  46. Johnsen A, Karlson U (2005) PAH degradation capacity of soil microbial communities: Does it depend on PAH exposure? Microb Ecol 50:488–495CrossRefGoogle Scholar
  47. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84CrossRefGoogle Scholar
  48. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodegrad 45:57–88CrossRefGoogle Scholar
  49. Ke L, Luo L, Wang P, Luan T, Tam NF-Y (2010) Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Biores Technol 101:6950–6961CrossRefGoogle Scholar
  50. Kim IS, Park J-S, Kim K-W (2001) Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl Geochem 16:1419–1428CrossRefGoogle Scholar
  51. Kim M, Bae S, Seol M, Lee J-H, Oh Y-S (2008) Monitoring nutrient impact on bacterial community composition during bioremediation of anoxic PAH-contaminated sediment. J Microbiol 46:615–623CrossRefGoogle Scholar
  52. Kirk TK, Farrell RL (1987) Enzymatic “Combustion”: The microbial degradation of Lignin. Ann Rev Microbiol 41:465–501CrossRefGoogle Scholar
  53. Kotterman MJJ, Heessels E, Jong E, Field JA (1994) The physiology of anthracene biodegradation by the white-rot fungus Bjerkandera sp. strain BOS55. Appl Microbiol Biotechnol 42:179–186CrossRefGoogle Scholar
  54. LaRocca C, Conti L, Crebelli R, Crochi B, Iacovella N, Rodriguez F, Turrio-Baldassarri L, DiDomenico A (1996) PAH content and mutagenicity of marine sediments from the Venice Lagoon. Ecotoxicol Environ Safety 33:236–245CrossRefGoogle Scholar
  55. Lei A-P, Hu Z-L, Wong Y-S, Tam NF-Y (2007) Removal of fluoranthene and pyrene by different microalgal species. Biores Technol 98:273–280CrossRefGoogle Scholar
  56. Li C-H, Zhou H-W, Wong Y-S, Tam NF-Y (2009) Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China. Sci Total Environ 407:5772–5779CrossRefGoogle Scholar
  57. Lin C, Gan L, Chen Z-L (2010) Biodegradation of naphthalene by strain Bacillus fusiformis (BFN). J Hazard Mater 182:771–777CrossRefGoogle Scholar
  58. Macías-Zamora JV, Mendoza-Vega E, Villaescusa-Celaya JA (2002) PAHs composition of surface marine sediments: a comparison to potential local sources in Todos Santos Bay, B.C., Mexico. Chemosphere 46:459–468CrossRefGoogle Scholar
  59. Mackay D, Shiu WY, Ma K-C, Lee SC (2006) Polynuclear aromatic hydrocarbons (PAHs) and related aromatic hydrocarbons. Handbook of physical-chemical properties and environmental fate for organic chemicals, 2nd Edition edn. CRC Press, Boca RatonGoogle Scholar
  60. Mahanty B, Pakshirajan K, Dasu V (2010) Batch biodegradation of PAHs in mixture by Mycobacterium frederiksbergense: analysis of main and interaction effects. Clean Technol Environ Pol 12:441–447CrossRefGoogle Scholar
  61. Maliszewska-Kordybach B, Smreczak B, Klimkowicz-Pawlas A, Terelak H (2008) Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 73:1284–1291CrossRefGoogle Scholar
  62. Márquez-Rocha FJ, Hernández-Rodríguez VZ, Vázquez-Duhalt R (2000) Biodegradation of soil-adsorbed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Biotechnol Lett 22:469–472CrossRefGoogle Scholar
  63. McElroy AE, Farrington JW, Teal JM (1989) Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In: Vanarasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, pp 1–40Google Scholar
  64. Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut 132:1–11CrossRefGoogle Scholar
  65. Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability: Tests with model solids. Environ Sci Technol 32:71–74CrossRefGoogle Scholar
  66. Nam K, Kim JY (2002) Role of loosely bound humic substances and humin in the bioavailability of phenanthrene aged in soil. Environ Pollut 118:427–433CrossRefGoogle Scholar
  67. Nam JJ, Thomas GO, Jaward FM, Steinnes E, Gustafsson O, Jones KC (2008) PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere 70:1596–1602CrossRefGoogle Scholar
  68. Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992a) Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl Environ Microbiol 58:1360–1363Google Scholar
  69. Narro M, Cerniglia CE, Van Baalen C, Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol 58:1351–1359Google Scholar
  70. Navarro RR, Iimura Y, Ichikawa H, Tatsumi K (2008) Treatment of PAHs in contaminated soil by extraction with aqueous DNA followed by biodegradation with a pure culture of Sphingomonas sp. Chemosphere 73:1414–1419CrossRefGoogle Scholar
  71. Neff JM (1979) Polycyclic aromatic hydrocarbons in the aquatic environment, sources, fates, and biological effects. Applied Science Publishers Ltd., LondonGoogle Scholar
  72. Pagnout C, Frache G, Poupin P, Maunit B, Muller J-F, Férard J-F (2007) Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: Expression in Mycobacterium smegmatis mc2155. Res Microbiol 158:175–186CrossRefGoogle Scholar
  73. Poeton TS, Stensel HD, Strand SE (1999) Biodegradation of polyaromatic hydrocarbons by marine bacteria: effect of solid phase on degradation kinetics. Water Res 33:868–880CrossRefGoogle Scholar
  74. Porte C, Albaigés J (1994) Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans, and fishes. Arch Environ Contam Toxicol 26:273–281CrossRefGoogle Scholar
  75. Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol 51:71–78CrossRefGoogle Scholar
  76. Pott P (1775) Cirurgical observations relative to the cataract, the polypus of the nose, the cancer of the scrotum, the different kinds of ruptures and the mortification of the toes and feet. In: Hawes, Clarke and Collins (eds) London, pp 63–68Google Scholar
  77. Pozdnyakova N, Nikiforova S, Makarov O, Chernyshova M, Pankin K, Turkovskaya O (2010) Influence of cultivation conditions on pyrene degradation by the fungus Pleurotus ostreatus D1. World J Microbiol Biotechnol 26:205–211CrossRefGoogle Scholar
  78. Quantin C, Joner EJ, Portal JM, Berthelin J (2005) PAH dissipation in a contaminated river sediment under oxic and anoxic conditions. Environ Pollut 134:315–322CrossRefGoogle Scholar
  79. Rehmann L, Prpich GP, Daugulis AJ (2008) Remediation of PAH contaminated soils: application of a solid-liquid two-phase partitioning bioreactor. Chemosphere 73:798–804CrossRefGoogle Scholar
  80. Reineke W (2001) Aerobic and anaerobic biodegradation potentials of microorganisms. In: Beek B (ed) Biodegradation and Persistance. Springer, BerlinGoogle Scholar
  81. Reuter W, Müller C (1993) New trends in photobiology: Adaptation of the photosynthetic apparatus of cyanobacteria to light and CO2. J Photochem Photobiol B: Biol 21:3–27CrossRefGoogle Scholar
  82. Rockne KJ, Chee-Sanford JC, Sanford RA, Hedlund BP, Staley JT, Strand SE (2000) Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol 66:1595–1601CrossRefGoogle Scholar
  83. Shao Z, Cui Z, Dong C, Lai Q, Chen L (2010) Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge. Deep Sea Res Part I: Oceanographic Res Papers 57:724–730CrossRefGoogle Scholar
  84. Smith JD, Bagg J, Wrigley I (1991) Extractable polycyclic hydrocarbons in waters from rivers in South-Eastern Australia. Water Res 25:1145–1150CrossRefGoogle Scholar
  85. Sobisch T, Heß H, Niebelschütz H, Schmidt U (2000) Effect of additives on biodegradation of PAH in soils. Colloids and Surfaces A: Physicochemical and Eng Aspects 162:1–14CrossRefGoogle Scholar
  86. Somtrakoon K, Suanjit S, Pokethitiyook P, Kruatrachue M, Lee H, Upatham S (2008) Enhanced biodegradation of anthracene in acidic soil by inoculated Burkholderia sp. VUN10013. Curr Microbiol 57:102–106CrossRefGoogle Scholar
  87. Tadros M, Hughes J (1997) Degradation of polycyclic aromatic hydrocarbons (PAHs) by indigenous mixed and pure cultures isolated from coastal sediments. Appl Biochem Biotechnol 63–65:865–870CrossRefGoogle Scholar
  88. Tang L, Tang X-Y, Zhu Y-G, Zheng M-H, Miao Q-L (2005) Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ Int 31:822–828CrossRefGoogle Scholar
  89. Tesai J-C, Kumar M, Lin J-G (2009) Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. J Hazard Mater 164:847–855CrossRefGoogle Scholar
  90. Valentín L, Feijoo G, Moreira MT, Lema JM (2006) Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. Int Biodeter Biodegrad 58:15–21CrossRefGoogle Scholar
  91. Valentín L, Lu-Chau TA, López C, Feijoo G, Moreira MT, Lema JM (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochem 42:641–648CrossRefGoogle Scholar
  92. Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676CrossRefGoogle Scholar
  93. Wang J, Bi Y, Pfister G, Henkelmann B, Zhu K, Schramm K-W (2009) Determination of PAH, PCB, and OCP in water from the Three Gorges reservoir accumulated by semipermeable membrane devices (SPMD). Chemosphere 75:1119–1127CrossRefGoogle Scholar
  94. Warshawsky D, Radike M, Jayasimhulu K, Cody T (1988) Metabolism of benzo(A)pyrene by a dioxygenase enzyme system of the freshwater green alga Selenastrum capricornutum. Biochem Biophys Res Commun 152:540–544CrossRefGoogle Scholar
  95. Warshawsky D, Cody T, Radike M, Reilman R, Schumann B, Ladow K, Schneider J (1995) Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chemico-Biol Interact 97:131–148CrossRefGoogle Scholar
  96. Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environ Pollut 81:229–249CrossRefGoogle Scholar
  97. Witt G (2002) Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea. Marine Chem 79:49–66CrossRefGoogle Scholar
  98. Xia XH, Yu H, Yang ZF, Huang GH (2006) Biodegradation of polycyclic aromatic hydrocarbons in the natural waters of the Yellow River: Effects of high sediment content on biodegradation. Chemosphere 65:457–466CrossRefGoogle Scholar
  99. Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicol Appl Pharmacol 206:73–93CrossRefGoogle Scholar
  100. Yamagiwa K, Ichikawa K (1915) Experimentelle Studie über die Pathogenese der Epithelialgeschwülste. Mitteilungen der Medizinischen Fakultät, Universität Tokyo 15, pp 295–344Google Scholar
  101. Yuan SY, Chang JS, Yen JH, Chang B-V (2001) Biodegradation of phenanthrene in river sediment. Chemosphere 43:273–278CrossRefGoogle Scholar
  102. Yuan SY, Shiung LC, Chang BB (2002) Biodegradation of polycyclic aromatic hydrocarbons by inoculated microorganisms in soil. Bull Environ Contam Toxicol 69:66–73CrossRefGoogle Scholar
  103. Yutthammo C, Thongthammachat N, Pinphanichakarn P, Luepromchai E (2010) Diversity and activity of PAH-degrading bacteria in the Phyllosphere of ornamental plants. Microb Ecol 59:357–368CrossRefGoogle Scholar
  104. Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Elisa Rojo-Nieto
    • 1
  • José A. Perales-Vargas-Machuca
    • 1
  1. 1.Department of Environmental TechnologiesAndalusian Centre of Marine Science and Technology (CACYTMAR), University of CadizCadizSpain

Personalised recommendations