In this paper we present a model for the carpet cutting problem in which carpet shapes are cut from a rectangular carpet roll with a fixed width and sufficiently long length. Our exact solution approaches decompose the problem into smaller parts and minimise the needed carpet roll length for each part separately. The customers requirements are to produce a cutting solution of the carpet within 3 minutes, in order to be usable during the quotation process for estimating the amount of carpet required. Our system can find and prove the optimal solution for 106 of the 150 real-world instances provided by the customer, and find high quality solutions to the remainder within this time limit. In contrast the existing solution developed some years ago finds (but does not prove) optimal solutions for 30 instances. Our solutions reduce the wastage by more than 35% on average compared to the existing approach.


Packing Problem Global Constraint Project Schedule Problem Customer Data Symmetry Breaking Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and placement problems. Math. Comput. Model. 17(7), 57–73 (1993)CrossRefGoogle Scholar
  2. 2.
    Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geometrical constraint kernel in space and time for handling polymorphic k-dimensional objects. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the non-overlapping rectangles constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 377–391. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Beldiceanu, N., Carlsson, M., Poder, E.: New filtering for the cumulative constraint in the context of non-overlapping rectangles. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 21–35. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Fekete, S.P., Schepers, J., van der Veen, J.C.: An exact algorithm for higher-dimensional orthogonal packing. Oper. Res. 55(3), 569–587 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    George, A.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  7. 7.
    Hadjiconstantinou, E., Christofides, N.: An exact algorithm for general, orthogonal, two-dimensional knapsack problems. Eur. J. Oper. Res. 83(1), 39–56 (1995)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lahrichi, A.: Scheduling: the notions of hump, compulsory parts and their use in cumulative problems. C. R. Acad. Sci., Paris, Sér. I, Math. 294(2), 209–211 (1982)Google Scholar
  9. 9.
    Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey. Eur. J. Oper. Res. 141(2), 241–252 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Appl. Math. 28(1), 59–70 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Martello, S., Vigo, D.: Exact solution of the two-dimensional finite bin packing problem. Manage. Sci. 44(3), 388–399 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: DAC 2001, pp. 530–535 (2001)Google Scholar
  13. 13.
    Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pearson, C., Birtwistle, M., Verden, A.R.: Reducing material wastage in the carpet industry. In: PAP 1998, pp. 101–112 (1998)Google Scholar
  15. 15.
    Pearson, C., Birtwistle, M., Verden, A.R.: Reducing material wastage in the carpet industry. In: INAP 1998, pp. 88–99 (1998)Google Scholar
  16. 16.
    Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS J. Comput. 19(1), 36–51 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schulte, C., Tack, G.: Views iterators for generic constraint implementations. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 817–821. Springer, Heidelberg (2005), doi:10.1007/11564751_71CrossRefGoogle Scholar
  18. 18.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving the resource constrained project scheduling problem with generalized precedences by lazy clause generation (September 2010),
  19. 19.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator. Constraints 16(3), 250–282 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Stuckey, P.J., de la Banda, M.G., Maher, M.J., Marriott, K., Slaney, J.K., Somogyi, Z., Wallace, M., Walsh, T.: The G12 project: Mapping solver independent models to efficient solutions. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 9–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andreas Schutt
    • 1
  • Peter J. Stuckey
    • 1
  • Andrew R. Verden
    • 2
  1. 1.National ICT Australia, Department of Computer Science & Software EngineeringThe University of MelbourneAustralia
  2. 2.National ICT Australia, School of Computer Science and EngineeringUniversity of New South WalesUNSW SydneyAustralia

Personalised recommendations