CP Models for Maximum Common Subgraph Problems

  • Samba Ndojh Ndiaye
  • Christine Solnon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6876)


The distance between two graphs is usually defined by means of the size of a largest common subgraph. This common subgraph may be an induced subgraph, obtained by removing nodes, or a partial subgraph, obtained by removing arcs and nodes. In this paper, we introduce two soft CSPs which model these two maximum common subgraph problems in a unified framework. We also introduce and compare different CP models, corresponding to different levels of constraint propagation.


Test Suite Label Graph Subgraph Isomorphism Common Subgraph Maximum Common Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bunke, H., Sharer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19(3), 255–259 (1998)CrossRefGoogle Scholar
  2. 2.
    Garey, M.R., Johnson, D.S.: Computer and intractability. Freeman, New York (1979)Google Scholar
  3. 3.
    Régin, J.-C.: Développement d’Outils Algorithmiques pour l’Intelligence Artificielle. Application à la Chimie Organique. PhD thesis, Université Montpellier II (1995)Google Scholar
  4. 4.
    Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. Journal of Computeraided Molecular Design 16(7), 521–533 (2002)CrossRefGoogle Scholar
  5. 5.
    Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM Journal on Computing 15(4), 1054–1068 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Durand, P.J., Pasari, R., Baker, J.W., Tsai, C.: An efficient algorithm for similarity analysis of molecules. Internet Journal of Chemistry 2 (1999)Google Scholar
  7. 7.
    Raymond, J.W., Gardiner, E.J., Willett, P.: Calculation of graph similarity using maximum common edge subgraphs. The Computer Journal 45(6) (2002)Google Scholar
  8. 8.
    McGregor, J.J.: Backtrack search algorithms and the maximal common subgraph problem. Software Practice and Experience 12(1), 23–34 (1982)CrossRefzbMATHGoogle Scholar
  9. 9.
    Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common subgraph detection algorithms: A performance analysis of three algorithms on a wide database of graphs. Graph Algorithms and Applications 11(1), 99–143 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Vismara, P., Valery, B.: Finding maximum common connected subgraphs using clique detection or constraint satisfaction algorithms. Communications in Computer and Information Science 14(1), 358–368 (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalog: Past, present and future. Constraints 12(1), 21–62 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–464. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: AAAI 1994, pp. 362–367 (1994)Google Scholar
  15. 15.
    Gent, I., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldiff constraint: An empirical survey. Artificial Intelligence 172(18), 1973–2000 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sorlin, S., Solnon, C.: A parametric filtering algorithm for the graph isomorphism problem. Constraints 13(4), 518–537 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with constraint programming. Constraints 15(3), 327–353 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artificial Intelligence 174(12-13), 850–864 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Samba Ndojh Ndiaye
    • 1
  • Christine Solnon
    • 1
  1. 1.LIRIS, UMR5205Université de Lyon, CNRS Université Lyon 1France

Personalised recommendations