Skip to main content

Constraint Reasoning and Kernel Clustering for Pattern Decomposition with Scaling

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6876))

Abstract

Motivated by an important and challenging task encountered in material discovery, we consider the problem of finding K basis patterns of numbers that jointly compose N observed patterns while enforcing additional spatial and scaling constraints. We propose a Constraint Programming (CP) model which captures the exact problem structure yet fails to scale in the presence of noisy data about the patterns. We alleviate this issue by employing Machine Learning (ML) techniques, namely kernel methods and clustering, to decompose the problem into smaller ones based on a global data-driven view, and then stitch the partial solutions together using a global CP model. Combining the complementary strengths of CP and ML techniques yields a more accurate and scalable method than the few found in the literature for this complex problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Powder Diffract. File, JCPDS Internat. Centre Diffract. Data, PA (2004)

    Google Scholar 

  2. Barber, Z.H., Blamire, M.G.: High throughput thin film materials science. Mat. Sci. Tech. 24(7), 757–770 (2008)

    Article  Google Scholar 

  3. Barr, G., Dong, W., Gilmore, C.J.: Polysnap3: a computer program for analysing and visualizing high-throughput data from diffraction and spectroscopic sources. J. Appl. Cryst. 42, 965 (2009)

    Article  Google Scholar 

  4. Baumes, L.A., Moliner, M., Corma, A.: Design of a full-profile-matching solution for high-throughput analysis of multiphase samples through powder x-ray diffraction. Chem. Eur. J. 15, 4258 (2009)

    Article  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, NY (2006)

    MATH  Google Scholar 

  6. Damoulas, T., Henry, S., Farnsworth, A., Lanzone, M., Gomes, C.: Bayesian Classification of Flight Calls with a novel Dynamic Time Warping Kernel. In: ICMLA 2010, pp. 424–429. IEEE, Los Alamitos (2010)

    Google Scholar 

  7. Gervet, C., Hentenryck, P.V.: Length-lex ordering for set csps. In: AAAI (2006)

    Google Scholar 

  8. Gomes, C.P.: Computational Sustainability: Computational methods for a sustainable environment, economy, and society. The Bridge, NAE 39(4) (2009)

    Google Scholar 

  9. Gregoire, J.M., Dale, D., Kazimirov, A., DiSalvo, F.J., van Dover, R.B.: High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev. Sci. Instrum. 80(12), 123905 (2009)

    Article  Google Scholar 

  10. Gregoire, J.M., Tague, M.E., Cahen, S., Khan, S., Abruna, H.D., DiSalvo, F.J., van Dover, R.B.: Improved fuel cell oxidation catalysis in pt1-xtax. Chem. Mater. 22(3), 1080 (2010)

    Article  Google Scholar 

  11. Hawkins, P., Stuckey, P.J.: Solving set constraint satisfaction problems using robdds. Journal of Artificial Intelligence Research 24, 109–156 (2005)

    Article  MATH  Google Scholar 

  12. Van Hentenryck, P., Michel, L.: The steel mill slab design problem revisited. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 377–381. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. In: STOC 1998, New York, NY, USA, pp. 79–89 (1998)

    Google Scholar 

  14. Long, C.J., Bunker, D., Karen, V.L., Li, X., Takeuchi, I.: Rapid identification of structural phases in combinatorial thin-film libraries using x-ray diffraction and non-negative matrix factorization. Rev. Sci. Instruments 80(103902) (2009)

    Google Scholar 

  15. Long, C.J., Hattrick-Simpers, J., Murakami, M., Srivastava, R.C., Takeuchi, I., Karen, V.L., Li, X.: Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis. Rev. Sci. Inst. 78 (2007)

    Google Scholar 

  16. Potyrailo, R.A., Maier, W.F.: Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials. CRC Press, Boca Raton (2007)

    Google Scholar 

  17. Prosser, P., Unsworth, C.: A connectivity constraint using bridges. In: ECAI 2006, The Netherlands, pp. 707–708 (2006)

    Google Scholar 

  18. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. Readings in Speech Recognition, 159 (1990)

    Google Scholar 

  19. Stockmeyer, L.J.: The set basis problem is np-complete. Technical Report Report No. RC-5431, IBM Watson Research Center, East Lansing, Michigan (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

LeBras, R., Damoulas, T., Gregoire, J.M., Sabharwal, A., Gomes, C.P., van Dover, R.B. (2011). Constraint Reasoning and Kernel Clustering for Pattern Decomposition with Scaling. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23786-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23785-0

  • Online ISBN: 978-3-642-23786-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics