Advertisement

Algorithm Selection and Scheduling

  • Serdar Kadioglu
  • Yuri Malitsky
  • Ashish Sabharwal
  • Horst Samulowitz
  • Meinolf Sellmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6876)

Abstract

Algorithm portfolios aim to increase the robustness of our ability to solve problems efficiently. While recently proposed algorithm selection methods come ever closer to identifying the most appropriate solver given an input instance, they are bound to make wrong and, at times, costly decisions. Solver scheduling has been proposed to boost the performance of algorithm selection. Scheduling tries to allocate time slots to the given solvers in a portfolio so as to maximize, say, the number of solved instances within a given time limit. We show how to solve the corresponding optimization problem at a low computational cost using column generation, resulting in fast and high quality solutions. We integrate this approach with a recently introduced algorithm selector, which we also extend using other techniques. We propose various static as well as dynamic scheduling strategies, and demonstrate that in comparison to pure algorithm selection, our novel combination of scheduling and solver selection can significantly boost performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audemard, G., Simon, L.: GLUCOSE: a solver that predicts learnt clauses quality. SAT Competition, 7–8 (2009)Google Scholar
  2. 2.
    Balint, A., Henn, M., Gableske, O.: hybridGM. Solver description. SAT Competition (2009)Google Scholar
  3. 3.
    Biere, A.: Picosat version 846. Solver description. SAT Competition (2007)Google Scholar
  4. 4.
    Biere, A.: Pre,icoSATSC 2009. SAT Competition, 41–43 (2009)Google Scholar
  5. 5.
    Biere, A.: Lingeling. SAT Race (2010)Google Scholar
  6. 6.
    Bregman, D.R.: The SAT Solver MXC, Version 0.99. SAT Competition, 37–38 (2009)Google Scholar
  7. 7.
    Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programs. Econometrica 29(4), 767–778 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dequen, G., Dubois, O.: kcnfs. Solver description. SAT Competition (2007)Google Scholar
  9. 9.
    Gebser, M., Kaufmann, B., Schaub, T.: Solution Enumeration for Projected Boolean Search Problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 71–86. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem. Operations Research 9, 849–859 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gomes, C.P., Selman, B.: Algorithm Portfolios. Artificial Intelligence 126(1-2), 43–62 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hamadi, Y., Jabbour, S., Sais, L.: LySAT: solver description. SAT Competition, 23-24 (2009)Google Scholar
  13. 13.
    Hamerly, G., Elkan, C.: Learning the K in K-Means. NIPS (2003)Google Scholar
  14. 14.
    Heule, M., van Marren, H.: march hi: solver description. SAT Competition, 27–28 (2009)Google Scholar
  15. 15.
    Heule, M., van Marren, H.: march nn, http://www.st.ewi.tudelft.nl/sat/download.php
  16. 16.
    Heule, M., Zwieten, J., Dufour, M., Maaren, H.: March_eq: implementing additional reasoning into an efficient lookahead SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Huberman, B., Lukose, R., Hogg, T.: An Economics Approach to Hard Computational Problems. Science 265, 51–54 (2003)Google Scholar
  18. 18.
    Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: Efficient dynamic local search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically Building Local Search SAT Solvers From Components. In: IJCAI (2009)Google Scholar
  20. 20.
    Lagoudakis, M.G., Littman, M.L.: Learning to select branching rules in the DPLL procedure for satisfiability. In: SAT (2001)Google Scholar
  21. 21.
    Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A Portfolio Approach to Algorithm Selection. In: IJCAI, pp. 1542–1543 (2003)Google Scholar
  22. 22.
    Li, C.M., Wei, W.: Combining Adaptive Noise and Promising Decreasing Variables in Local Search for SAT. Solver description. SAT Competition (2009)Google Scholar
  23. 23.
    Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Non-Model-Based Algorithm Portfolios for SAT. SAT (to be published, 2011)Google Scholar
  24. 24.
    Nikolic, M., Maric, F., Janici, P.: Instance Based Selection of Policies for SAT Solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using Case-based Reasoning in an Algorithm Portfolio for Constraint Solving. In: Irish Conference on Artificial Intelligence and Cognitive Science (2008)Google Scholar
  26. 26.
    Pham, D.N., Gretton, C.: gnovelty+. Solver description. SAT Competition (2007)Google Scholar
  27. 27.
    Pham, D.N., Gretton, C.: gnovelty+ (v.2). Solver description. SAT Competition (2009)Google Scholar
  28. 28.
    Rice, J.R.: The algorithm selection problem. Advances in Computers, 65–118 (1976)Google Scholar
  29. 29.
  30. 30.
    Silverthorn, B., Miikkulainen, R.: Latent Class Models for Algorithm Portfolio Methods. In: AAAI (2010)Google Scholar
  31. 31.
    Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009)Google Scholar
  32. 32.
    Soos, M.: CryptoMiniSat 2.5.0. Solver description. SAT Race (2010)Google Scholar
  33. 33.
    Sorensson, N., Een, N.: MiniSAT 2.2.0 (2010), http://minisat.se
  34. 34.
    Streeter, M., Golovin, D., Smith, S.F.: Combining Multiple Heuristics Online. In: AAAI, pp. 1197–1203 (2007)Google Scholar
  35. 35.
    Wei, W., Li, C.M.: Switching Between Two Adaptive Noise Mechanisms in Local Search for SAT. Solver description. SAT Competition (2009)Google Scholar
  36. 36.
    Wei, W., Li, C.M., Zhang, H.: Combining adaptive noise and promising decreasing variables in local search for SAT. Solver description. SAT Competition (2007)Google Scholar
  37. 37.
    Wei, W., Li, C.M., Zhang, H.: Deterministic and random selection of variables in local search for SAT. Solver description. SAT Competition (2007)Google Scholar
  38. 38.
    Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection. In: AAAI (2010)Google Scholar
  39. 39.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla2009: an Automatic Algorithm Portfolio for SAT. Solver description. SAT Competition (2009)Google Scholar
  40. 40.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm Selection for SAT. JAIR 32(1), 565–606 (2008)zbMATHGoogle Scholar
  41. 41.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 712–727. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Serdar Kadioglu
    • 1
  • Yuri Malitsky
    • 1
  • Ashish Sabharwal
    • 2
  • Horst Samulowitz
    • 2
  • Meinolf Sellmann
    • 2
  1. 1.Dept. of Computer ScienceBrown UniversityUSA
  2. 2.IBM Watson Research CenterYorktown HeightsUSA

Personalised recommendations