Advertisement

The Parameterized Complexity of Local Consistency

  • Serge Gaspers
  • Stefan Szeider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6876)

Abstract

We investigate the parameterized complexity of deciding whether a constraint network is k-consistent. We show that, parameterized by k, the problem is complete for the complexity class co-W[2]. As secondary parameters we consider the maximum domain size d and the maximum number l of constraints in which a variable occurs. We show that parameterized by k + d, the problem drops down one complexity level and becomes co-W[1]-complete. Parameterized by k + d + l the problem drops down one more level and becomes fixed-parameter tractable. We further show that the same complexity classification applies to strong k-consistency, directional k-consistency, and strong directional k-consistency.

Our results establish a super-polynomial separation between input size and time complexity. Thus we strengthen the known lower bounds on time complexity of k-consistency that are based on input size.

Keywords

Parameterized Complexity Parameterized Problem Input Size Constraint Network Constraint Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atserias, A., Bulatov, A.A., Dalmau, V.: On the power of k-consistency. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 279–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 3. Elsevier, Amsterdam (2006)Google Scholar
  3. 3.
    Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the parameterized complexity of short computation and factorization. Archive for Mathematical Logic 36(4-5), 321–337 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cesati, M.: The Turing way to parameterized complexity. Journal of Computer and System Sciences 67, 654–685 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cesati, M.: Compendium of parameterized problems (September 2006), http://bravo.ce.uniroma2.it/home/cesati/research/compendium.pdf
  6. 6.
    Cesati, M., Ianni, M.D.: Computation models for parameterized complexity. Mathematical Logic Quarterly 43, 179–202 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, Y., Flum, J.: The parameterized complexity of maximality and minimality problems. Annals of Pure and Applied Logic 151(1), 22–61 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cooper, M.C.: An optimal k-consistency algorithm. Artificial Intelligence 41(1), 89–95 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    De La Briandais, R.: File searching using variable length keys. In: IRE-AIEE-ACM 1959 (Western), pp. 295–298. ACM, New York (1959)Google Scholar
  10. 10.
    Dechter, R.: From local to global consistency. Artificial Intelligence 55(1), 87–107 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)zbMATHGoogle Scholar
  12. 12.
    Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence 34(1), 1–38 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. In: Proceedings of the Twenty-first Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1991), vol. 87, pp. 161–178 (1992)Google Scholar
  14. 14.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. II. On completeness for W[1]. Theoretical Computer Science 141(1-2), 109–131 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized approximation problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 121–129. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)zbMATHGoogle Scholar
  18. 18.
    Fredkin, E.: Trie memory. Communications of the ACM 3, 490–499 (1960)CrossRefGoogle Scholar
  19. 19.
    Freuder, E.C.: Synthesizing constraint expressions. Communications of the ACM 21(11), 958–966 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Freuder, E.C.: A sufficient condition for backtrack-bounded search. Journal of the ACM 32(4), 755–761 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. Journal of the ACM 48(6), 1184–1206 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Garey, M.R., Johnson, D.R.: Computers and Intractability. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  23. 23.
    Gaspers, S., Szeider, S.: The parameterized complexity of local consistency. Electronic Colloquium on Computational Complexity (ECCC), Technical Report TR11-071 (2011)Google Scholar
  24. 24.
    Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing intractability - a multivariate complexity analysis of interval constrained coloring. Journal of Discrete Algorithms 9(1), 137–151 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)CrossRefzbMATHGoogle Scholar
  26. 26.
    Montanari, U.: Networks of constraints: fundamental properties and applications to picture processing. Information Sciences 7, 95–132 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Serge Gaspers
    • 1
  • Stefan Szeider
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations