Synthesis of Search Algorithms from High-Level CP Models

  • Samir A. Mohamed Elsayed
  • Laurent Michel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6876)


The ability to specify CP programs in terms of a declarative model and a search procedure is instrumental to the industrial CP successes. Yet, writing search procedures is often difficult for novices or people accustomed to model & run approaches. The viewpoint adopted in this paper argues for the synthesis of a search from the declarative model to exploit the problem instance structures. The intent is not to eliminate the search. Instead, it is to have a default that performs adequately in the majority of cases while retaining the ability to write full-fledged procedures. Empirical results demonstrate that the approach is viable, yielding procedures approaching and sometimes rivaling hand-crafted searches.


Constraint Programming Constraint Satisfaction Problem Global Constraint Default Rule Static Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Appl. Math. 123(1-3), 75–102 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathematical and Computer Modelling 20(12), 97–123 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting Systematic Search by Weighting Constraints. In: Proceedings of the Sixteenth Eureopean Conference on Artificial Intelligence, ECAI 2004, pp. 146–150. IOS Press, Amsterdam (2004)Google Scholar
  4. 4.
    Elsayed, S.A.M., Michel, L.: Synthesis of search algorithms from high-level CP models. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 186–200. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Eriksson, M.: Detecting symmetries in relational models of CSPs. Master’s thesis, Department of Information Technology,Uppsala University, Sweden (2005)Google Scholar
  6. 6.
    Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast, scalable, constraint solver. In: ECAI 2006: 17th European Conference on Artificial Intelligence, August 29-September 1, Riva del Garda, Italy, p. 98 (2006)Google Scholar
  7. 7.
    Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 480–481. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Gibbs, J.P., Martin, W.T.: Urbanization, technology, and the division of labor: International patterns. American Sociological Review 27(5), 667–677 (1962)CrossRefGoogle Scholar
  9. 9.
    Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Journal of automated reasoning 24(1), 67–100 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Belgian Constraints Group. Data and results for the steel mill slab problem,, Technical report, UCLouvain
  11. 11.
    Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence 14(3), 263–313 (1980)CrossRefGoogle Scholar
  12. 12.
    Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 607–615 (1995)Google Scholar
  13. 13.
    Van Hentenryck, P., Flener, P., Pearson, J., Ågren, M.: Tractable Symmetry Breaking for CSPs with Interchangeable Values. In: IJCAI, pp. 277–284 (2003)Google Scholar
  14. 14.
    SA ILOG. ILOG Concert 2.0Google Scholar
  15. 15.
    Michel, L., Van Hentenryck, P.: Impact-based versus Activity-based Search for Black-Box Contraint-Programming Solvers (2011),
  16. 16.
    Monette, J.N., Deville, Y., Van Hentenryck, P.: Aeon: Synthesizing scheduling algorithms from high-level models. Operations Research and Cyber-Infrastructure, 43–59 (2009)Google Scholar
  17. 17.
    OMahony, E., Hebrard, E., Holland, A., Nugent, C., OSullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: 19th Irish Conference on AI (2008)Google Scholar
  18. 18.
    Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Schaus, P., Hentenryck, P., Régin, J.-C.: Scalable load balancing in nurse to patient assignment problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 248–262. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Smith, B.M.: Succeed-first or fail-first: A case study in variable and value ordering. In: Malyshkin, V.E. (ed.) PaCT 1997. LNCS, vol. 1277, pp. 321–330. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Gecode Team. Gecode: Generic constraint development environment (2006),
  22. 22.
    Van Hentenryck, P.: Constraint and integer programming in OPL. INFORMS Journal on Computing 14(4), 345–372 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Van Hentenryck, P., Flener, P., Pearson, J., Ågren, M.: Compositional derivation of symmetries for constraint satisfaction. Abstraction, Reformulation and Approximation, 234–247 (2005)Google Scholar
  24. 24.
    Van Hentenryck, P., Michel, L.: Constraint-based local search. The MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  25. 25.
    Van Hentenryck, P., Michel, L.: The steel mill slab design problem revisited. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 377–381. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Van Hentenryck, P., Michel, L.: Synthesis of constraint-based local search algorithms from high-level models. In: AAAI 2007, pp. 273–278. AAAI Press, Menlo Park (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Samir A. Mohamed Elsayed
    • 1
  • Laurent Michel
    • 1
  1. 1.Computer Science DepartmentUniversity of ConnecticutUSA

Personalised recommendations