Image Classification for Age-related Macular Degeneration Screening Using Hierarchical Image Decompositions and Graph Mining

  • Mohd Hanafi Ahmad Hijazi
  • Chuntao Jiang
  • Frans Coenen
  • Yalin Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6912)


Age-related Macular Degeneration (AMD) is the most common cause of adult blindness in the developed world. This paper describes a new image mining technique to perform automated detection of AMD from colour fundus photographs. The technique comprises a novel hierarchical image decomposition mechanism founded on a circular and angular partitioning. The resulting decomposition is then stored in a tree structure to which a weighted frequent sub-tree mining algorithm is applied. The identified sub-graphs are then incorporated into a feature vector representation (one vector per image) to which classification techniques can be applied. The results show that the proposed approach performs both efficiently and accurately.


Hierarchical image decomposition weighted graph mining image partitioning image classification 


  1. 1.
    Barriga, E.S., Murray, V., Agurto, C., Pattichis, M.S., Russell, S., Abramoff, M.D., Davis, H., Soliz, P.: Multi-scale AM-FM for lesion phenotyping on age-related macular degeneration. In: IEEE International Symposium on Computer-Based Medical Systems, pp. 1–5 (2009)Google Scholar
  2. 2.
    Barriga, E.S., Murray, V., Agurto, C., Pattichis, M.S., Russell, S., Abramoff, M.D., Davis, H., Soliz, P.: Automatic computer-based grading for age-related maculopathy. Investigative Ophthalmology and Visual Science 51, E–Abstract 1793 (2010)Google Scholar
  3. 3.
    Brandon, L., Hoover, A.: Drusen detection in a retinal image using multi-level analysis. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 618–625. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Chang, C-C., Lin, C-J.: LIBSVM: A library for support vector machines (2001) Software,
  5. 5.
    Chang, Y.-W., Lin, C.-J.: Feature ranking using linear SVM. In: WCCI 2008, pp. 53–64 (2008)Google Scholar
  6. 6.
    Chaum, E., Karnowski, T.P., Priya Govindasamy, V.: Automated diagnosis of retinopathy by content-based image retrieval. Retina 28(10), 1463–1477 (2008)CrossRefGoogle Scholar
  7. 7.
    Cortes, C., Vapnik, V.: Support -vector network. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  8. 8.
    de Jong, P.T.V.M.: Age-related macular degeneration. The New England Journal of Medicine 355(14), 1474–1485 (2006)CrossRefGoogle Scholar
  9. 9.
    Elsayed, A., Coenen, F., Jiang, C., Garcia-Finana, M., Sluming, V.: Corpus callosum MR image classification. Knowledge Based Systems 23(4), 330–336 (2010)CrossRefGoogle Scholar
  10. 10.
    Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)zbMATHGoogle Scholar
  11. 11.
    Freund, D.E., Bressler, N., Burlina, P.: Automated detection of drusen in the macula. In: Proceedings of the Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro, pp. 61–64 (2009)Google Scholar
  12. 12.
    Golchin, F., Paliwal, K.K.: Quadtree-based classification in subband image coding. Digital Signal Processing 13, 656–668 (2003)CrossRefGoogle Scholar
  13. 13.
    Hijazi, M.H.A., Coenen, F., Zheng, Y.: Image classification using histograms and time series analysis: A study of age-related macular degeneration screening in retina image data. In: Proceedings of 10th Industrial Conference on Data Mining, pp. 197–209 (2010)Google Scholar
  14. 14.
    Hijazi, M.H.A., Coenen, F., Zheng, Y.: Retinal image classification for the screening of age-related macular degeneration. In: The 30th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 325–338 (2010)Google Scholar
  15. 15.
    Hijazi, M.H.A., Coenen, F., Zheng, Y.: Retinal image classification using a histogram based approach. In: Proceedings of International Joint Conference on Neural Network 2010 (World Congress on Computational Intelligence 2010), pp. 3501–3507 (2010)Google Scholar
  16. 16.
    Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Sathiya Keerthi, S., Sundararajan, S.: A dual coordinate descent method for large-scale linear SVM. In: International Conference on Machine Learning, pp. 408–415 (2008)Google Scholar
  17. 17.
    Jager, R.D., Mieler, W.F., Mieler, J.W.: Age-related macular degeneration. The New England Journal of Medicine 358(24), 2606–2617 (2008)CrossRefGoogle Scholar
  18. 18.
    Jiang, C., Coenen, F.: Graph-based image classification by weighting scheme. In: AI 2008, pp. 63–76 (2008)Google Scholar
  19. 19.
    Köse, C., Şevik, U., Gençalioğlu, O.: A statistical segmentation method for measuring age-related macular degeneration in retinal fundus images. Journal of Medical Systems 34(1), 1–13 (2008)CrossRefGoogle Scholar
  20. 20.
    Köse, C., Şevik, U., Gençalioğlu, O.: Automatic segmentation of age-related macular degeneration in retinal fundus images. Computers in Biology and Medicine 38, 611–619 (2008)CrossRefGoogle Scholar
  21. 21.
    Minassian, D., Reidy, A.: Future sight loss UK (2): An epidemiological and economic model for sight loss in the decade 2010-2020. Technical report, Royal National Institute of Blind People (2009)Google Scholar
  22. 22.
    Rapantzikos, K., Zervakis, M., Balas, K.: Detection and segmentation of drusen deposits on human retina: Potential in the diagnosis of age-related macular degeneration. Medical Image Analysis 7, 95–108 (2003)CrossRefGoogle Scholar
  23. 23.
    Samet, H.: The quadtree and related hierarchical data structures. ACM Computing Surveys 16(2), 187–260 (1984)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sbeh, Z.B., Cohen, L.D., Mimoun, G., Coscas, G.: A new approach of geodesic reconstruction for drusen segmentation in eye fundus images. IEEE Transactions on Medical Imaging 20(12), 1321–1333 (2001)CrossRefGoogle Scholar
  25. 25.
    Spann, M., Wilson, R.: A quad-tree approach to image segmentation which combines statistical and spatial information. Pattern Recognition 18, 257–269 (1985)CrossRefGoogle Scholar
  26. 26.
    Witten, I., Frank, E.H.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  27. 27.
    Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: IEEE Conference on Data Mining, pp. 721–724 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohd Hanafi Ahmad Hijazi
    • 1
    • 3
  • Chuntao Jiang
    • 1
  • Frans Coenen
    • 1
  • Yalin Zheng
    • 2
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Eye and Vision Science, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
  3. 3.School of Engineering and Information TechnologyUniversiti Malaysia SabahKota KinabaluMalaysia

Personalised recommendations