Evaluating Physical/Virtual Occlusion Management Techniques for Horizontal Displays

  • Waqas Javed
  • KyungTae Kim
  • Sohaib Ghani
  • Niklas Elmqvist
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6948)


We evaluate unguided and guided visual search performance for a set of techniques that mitigate occlusion between physical and virtual objects on a tabletop display. The techniques are derived from a general model of hybrid physical/virtual occlusion, and take increasingly drastic measures to make the user aware of, identify, and access hidden objects—but with increasingly space-consuming and disruptive impact on the display. Performance is different depending on the visual display, suggesting a tradeoff between management strength and visual space deformation.


Completion Time Visual Search Physical Object Virtual Object Visual Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Electronic Supplementary material (34,113 KB)


  1. 1.
    Wigdor, D., Penn, G., Ryall, K., Esenther, A., Shen, C.: Living with a tabletop: Analysis and observations of long term office use of a multi-touch table. In: Proceedings of the IEEE Workshop on Tabletop Displays, pp. 60–67 (2007)Google Scholar
  2. 2.
    Steimle, J., Khalilbeigi, M., Mülhäuser, M., Hollan, J.D.: Physical and digital media usage patterns on interactive tabletop surfaces. In: Proc. ACM ITS, pp. 167–176 (2010)Google Scholar
  3. 3.
    Baudisch, P., Gutwin, C.: Multiblending: displaying overlapping windows simultaneously without the drawbacks of alpha blending. In: Proc. ACM CHI, pp. 367–374 (2004)Google Scholar
  4. 4.
    Ishak, E.W., Feiner, S.K.: Interacting with hidden content using content-aware free-space transparency. In: Proc. ACM UIST, pp. 189–192 (2004)Google Scholar
  5. 5.
    Ramos, G., Robertson, G., Czerwinski, M., Tan, D., Baudisch, P., Hinckley, K., Agrawala, M.: Tumble! Splat! Helping users access and manipulate occluded content in 2D drawings. In: Proc. ACM AVI, pp. 428–435 (2006)Google Scholar
  6. 6.
    Vogel, D., Balakrishnan, R.: Occlusion-aware interfaces. In: Proc. ACM CHI, pp. 263–272 (2010)Google Scholar
  7. 7.
    Vogel, D., Baudisch, P.: Shift: a technique for operating pen-based interfaces using touch. In: Proc. ACM CHI, pp. 657–666 (2007)Google Scholar
  8. 8.
    Vogel, D., Cudmore, M., Casiez, G., Balakrishnan, R., Keliher, L.: Hand occlusion with tablet-sized direct pen input. In: Proc. ACM CHI, pp. 557–566 (2009)Google Scholar
  9. 9.
    Cotting, D., Gross, M.H.: Interactive environment-aware display bubbles. In: Proc. ACM Symposium on User Interface Software & Technology, pp. 245–254 (2006)Google Scholar
  10. 10.
    Bell, B., Feiner, S.: Dynamic space management for user interfaces. In: Proc. ACM UIST, pp. 239–248 (2000)Google Scholar
  11. 11.
    Bell, B., Feiner, S., Höllerer, T.: View management for virtual and augmented reality. In: Proc. ACM UIST, pp. 101–110 (2001)Google Scholar
  12. 12.
    Porter, T., Duff, T.: Compositing digital images. Computer Graphics 18(3), 253–259 (1984)CrossRefGoogle Scholar
  13. 13.
    Hancock, M.S., Booth, K.S.: Improving menu placement strategies for pen input. In: Proc. GI, pp. 221–230 (2004)Google Scholar
  14. 14.
    Inkpen, K., Dearman, D., Argue, R., Comeau, M., Fu, C.L., Kolli, S., Moses, J., Pilon, N., Wallace, J.R.: Left-handed scrolling for pen-based devices. International Journal of Human Computer Interaction 21(1), 91–108 (2006)Google Scholar
  15. 15.
    Forlines, C., Balakrishnan, R.: Evaluating tactile feedback and direct vs. indirect in pointing and crossing selection tasks. In: Proc. ACM CHI, pp. 1563–1572 (2008)Google Scholar
  16. 16.
    Leithinger, D., Haller, M.: Improving menu interaction for cluttered tabletop setups with user-drawn path menus. In: Proc. IEEE Tabletop, pp. 121–128 (2007)Google Scholar
  17. 17.
    Apitz, G., Guimbretière, F.: CrossY: a crossing-based drawing application. ACM Transactions on Graphics 24(3), 930 (2005)CrossRefGoogle Scholar
  18. 18.
    Ramos, G., Balakrishnan, R.: Fluid interaction techniques for the control and annotation of digital video. In: Proc. ACM UIST, pp. 105–114 (2003)Google Scholar
  19. 19.
    Zeleznik, R.C., Miller, T.: Fluid inking: augmenting the medium of free-form inking with gestures. In: Proc. GI, pp. 155–162 (2006)Google Scholar
  20. 20.
    Brandl, P., Leitner, J., Seifried, T., Haller, M., Doray, B., To, P.: Occlusion-aware menu design for digital tabletops. In: Ext. Abstr. of ACM CHI, pp. 3223–3228 (2009)Google Scholar
  21. 21.
    Shen, C., Hancock, M.S., Forlines, C., Vernier, F.D.: CoR2Ds: Context-rooted rotatable draggables for tabletop interaction. In: Proc. ACM CHI, pp. 1781–1784 (2005)Google Scholar
  22. 22.
    Khalilbeigi, M., Steimle, J., Mühlhäuser, M.: Interaction techniques for hybrid piles of documents on interactive tabletops. In: Ext. Abstr. of ACM CHI, pp. 3943–3948 (2010)Google Scholar
  23. 23.
    Shneiderman, B.: Interface—touch screens now offer compelling uses. IEEE Software 8(2), 93–94, 107 (1991)CrossRefGoogle Scholar
  24. 24.
    Wellner, P.: Interacting with paper on the DigitalDesk. CACM 36(7), 86–96 (1993)Google Scholar
  25. 25.
    Harrison, C.: Appropriated interaction surfaces. Computer 43(6), 86–89 (2010)CrossRefGoogle Scholar
  26. 26.
    Çetin, G., Bedi, R., Sandler, S. (eds.): Multitouch Technologies. NUI (2009)Google Scholar
  27. 27.
    Weiss, M., Wagner, J., Jansen, Y., Jennings, R., Khoshabeh, R., Hollan, J.D., Borchers, J.O.: SLAP widgets: bridging the gap between virtual and physical controls on tabletops. In: Proc. ACM CHI, pp. 481–490 (2009)Google Scholar
  28. 28.
    Han, J.Y.: Low-cost multi-touch sensing through frustrated total internal reflection. In: Proc. ACM UIST, pp. 115–118 (2005)Google Scholar
  29. 29.
    Kaltenbrunner, M.: reacTIVision and TUIO: A tangible tabletop toolkit. In: Proc. ACM ITS, pp.9–16 (2009)Google Scholar
  30. 30.
    Treisman, A.: Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception & Performance 17(3), 652–676 (1991)CrossRefGoogle Scholar
  31. 31.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: Proc. Workshop at IEEE CVPR (2004)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Waqas Javed
    • 1
  • KyungTae Kim
    • 1
  • Sohaib Ghani
    • 1
  • Niklas Elmqvist
    • 1
  1. 1.School of Electrical & Computer EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations